数据结构--线性表顺序存储(一)

2014-11-24 02:27:47 · 作者: · 浏览: 2
之前对 数据结构 的学习,多注重思想,小于实践。发现实现过程中,其实存在着不少问题。打算在这一阶段的学习过程中,总结些实现过程的知识,方便日后再学习。
知识点: 指针传递 和 函数指针
指针传递:当数据量较大时(如 类或者结构体),函数在传递参数时 通常传递 指针
函数定义时,可以直接操作 形参,也可以定义变量 接受形参之后在 操作
Status ListTraverse(SqList *L)
{
SqList *list_point = L; //内部定义 一变量,接受 形参后再操作
....
}
int MergeList_sq(SqList *DesList, SqList *list_a, SqList *list_b)
{
DesList->length = list_a->length + list_b->length; //直接操作形参值,
....
}
函数指针
声明/定义: int LocateElem(SqList *L, ElemType e, Status (*cmp)(ElemType, ElemType));
调用: LocateElem(&La, 3, compare); //compare只要与 Status cmp(int, int ) 格式相同即可
可以
typedef Status (*FunType)(ElemType, ElemType); // 用 FunType 代表指向 符合 Status xxx(int, int ) 格式函数的函数指针
声明/定义: int LocateElem(SqList *L, ElemType e, FunType);
调用: LocateElem(&La, 3, compare); //compare只要与 Status cmp(int, int ) 格式相同即可
//顺序存储链表的实现  
#include   
#include   
   
#define ElemType int  
#define LIST_INCREMENT 10  
#define LIST_INIT_SIZE 20  
#define Status int  
#define Position int  
#define OK 1  
#define TRUE 1  
#define FALSE 0  
#define ERROR 0  
   
typedef struct{  
ElemType *base; //链表首地址  
int length;  
int listsize;  
}SqList;  
   
typedef Status (*FunType)(ElemType, ElemType);  
Status compare(ElemType, ElemType); //  小于等于1时返回 1   否则为 0  
Status GetElem(SqList *L, Position i, ElemType *e);//取 位置i的元素  
Status InitList_sq(SqList *L);  
Status InsertList_sq(SqList *L, int i, ElemType e);//在第i位置 即base[i-1] 前插入e  
Status ListTraverse(SqList *L); //遍历列表  
//int LocateElem(SqList *L, ElemType e, FunType cmp);//使L种元素与e满足  函数指令的位置,可以更改指向的函数  
int LocateElem(SqList *L, ElemType e, Status (*cmp)(ElemType, ElemType));  
   
int MergeList_sq(SqList *DesList, SqList *list_a, SqList *list_b);  
   
int main()  
{  
    SqList list_sqA;  
    SqList list_sqB;  
    SqList list_sqC;  
    int i;  
    InitList_sq(&list_sqA);  
    for (i = 1; i <= 9; i++)  
    {  
        InsertList_sq(&list_sqA, i, i);  
        //printf("insert success\n");  
    }  
    ListTraverse(&list_sqA);  
    //i = LocateElem(&list_sqA, 4, compare);//第一个小于4的下标  (位置-1)  
    //printf("%d", i);  
   
    InitList_sq(&list_sqB);  
    for (i = 1; i <= 20; i++)  
    {  
        InsertList_sq(&list_sqB, i, i*2);     
    }  
    ListTraverse(&list_sqB);  
   
    InitList_sq(&list_sqC);  
    MergeList_sq(&list_sqC, &list_sqA, &list_sqB);  
   
    ListTraverse(&list_sqC);  
    return 0;  
}  
   
   
Status InitList_sq(SqList *L)  
{  
    SqList *List = L;  
    if(NULL == (List->
base = (ElemType *)malloc(LIST_INIT_SIZE*sizeof(ElemType)))) return FALSE; List->listsize = LIST_INIT_SIZE; List->length = 0; return OK; } //int LocateElem(SqList *L, ElemType e, FunType cmp); int LocateElem(SqList *L, ElemType e, Status (*cmp)(ElemType, ElemType))//第一个小于e的数的位置 { int i = 0; SqList *List = L; for (i = 0; i < List->length; i++) { if (cmp(e, List->base[i])) { return i; } } return 0; } Status compare(ElemType a, ElemType b) { if ( a <= b) return 1; else return 0; } Status InsertList_sq(SqList *L, int i, ElemType e)//第i位置 之前 1<= i <= length+1 { SqList *List = L; int k = 0; if ((i < 1)||(i > List->length+1))//边界检测 { return ERROR; } if (List->length == List->listsize) //空间检测 { List->base = (ElemType*)realloc(List->base, (List->length + LIST_INCREMENT)*sizeof(ElemType)); } for(k = List->length; k >= i; k--) //k初始话为 第length+1位置的数组下标 length,直到第i位置对应下标i-1 List->base[k] = List->base[k-1]; List->base[i-1] = e;//k = i -1 ;用i-1不用k,可包括 i在length+1位置插入 List->length++;//更改长度 return OK; } Status ListTraverse(SqList *L) { SqList *list_point = L; int i; for (i = 1; i <= list_point->length; i++) { printf("%d ",list_point->base[i-1]); } printf("\n"); return OK; } Status GetElem(SqList *L, Position a, ElemType *e) { int i = 0; if ((a < 1)||(a > L->length)) { return ERROR; } *e = L->base[a-1]; return OK; } int MergeList_sq(SqList *DesList, SqList *list_a, SqList *list_b) { ElemType *Pa_end = list_a->base + list_a->length - 1; ElemType *Pb_end = list_b->base + list_b->length - 1; ElemType *Pa = list_a->base; ElemType *Pb = list_b->base; ElemType *P_l