Note: You can only move either down or right at any point in time.
问题描述:给定一个包含m*n个非负整数的网格,找到一条从左上角到右下角的路径,使得该路径上的数字的和最小。
注意:在每个点要么往下移动,要么往右移动。
本题可以采用动态规划的方法:设f(i, j)是从左上角到位置(i, j)的一条和最小的路径,那么该路径要么经过(i-1, j),要么经过(i, j-1),因此,最优子结构可以写为递归式:
f(i, j) = min(f(i-1, j), f(i, j-1)) + grid[i][j],那么,可以用e[0...m-1, 0...n-1]的矩阵保存f(i, j),又因为,e[i][j]仅依赖于e[i-1][j]和e[i][j-1],因此,可以仅用两个数组来保存中间结果,空间复杂度为O(n)。
class Solution {
public:
int minPathSum(vector > &grid) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
vector
>::size_type grid_size = grid.size();
if(grid_size == 0)
return 0;
vector >::size_type arr_size = grid[0].size();
int *e = new int[arr_size];
int *tmp = new int[arr_size];
for(int i = 0; i < grid_size; ++i) {
for(int j = 0; j < arr_size; ++j) {
if(i == 0 && j == 0) {
tmp[j] = grid[i][j];
}
else if(i == 0) {
tmp[j] = tmp[j-1] + grid[i][j];
}
else if(j == 0) {
tmp[j] = e[j] + grid[i][j];
}
else {
tmp[j] = min(tmp[j-1], e[j]) + grid[i][j];
}
}
copy(tmp, tmp+arr_size, e);
}
int minsum = e[arr_size-1];
delete[] e;
delete[] tmp;
return minsum;
}
};