题意:求第n个斐波那契数。
思路:矩阵快速幂。利用,可化为矩阵快速幂,即:由于矩阵乘法具有结合律,因此对于矩阵A,有A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。
#include#include using namespace std; const int M = 10000; struct Matrix { int v[3][3]; } m; Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B { Matrix C; C.v[0][0] = (A.v[0][0] * B.v[0][0] + A.v[0][1] * B.v[1][0]) % M; C.v[0][1] = (A.v[0][0] * B.v[0][1] + A.v[0][1] * B.v[1][1]) % M; C.v[1][0] = (A.v[1][0] * B.v[0][0] + A.v[1][1] * B.v[1][0]) % M; C.v[1][1] = (A.v[1][0] * B.v[0][1] + A.v[1][1] * B.v[1][1]) % M; return C; } Matrix mtPow(Matrix A, int k) // 求矩阵 A ^ k { if (k == 1) return A; A = mtPow(A, k / 2); if (k % 2 == 0) { return mtMul(A, A); } else { return mtMul(mtMul(A, A), m); } } int main(){ int n; m.v[0][0] = 0,m.v[0][1] = 1; m.v[1][0] = 1,m.v[1][1] = 1; while(scanf("%d",&n)!=EOF,n != -1){ if(n == 0){ printf("0\n"); continue; } Matrix A = mtPow(m,n); printf("%d\n",A.v[0][1]); } return 0; }