Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
分析:
任意一条直线都可以表述为
y = ax + b
假设,有两个点(x1,y1), (x2,y2),如果他们都在这条直线上则有
y1 = kx1 +b
y2 = kx2 +b
由此可以得到关系,k = (y2-y1)/(x2-x1)。即如果点c和点a的斜率为k, 而点b和点a的斜率也为k,可以知道点c和点b也在一条线上。
取定一个点points[i], 遍历其他所有节点, 然后统计斜率相同的点数,并求取最大值即可
/**
* Definition for a point.
* struct Point {
* int x;
* int y;
* Point() : x(0), y(0) {}
* Point(int a, int b) : x(a), y(b) {}
* };
*/
class Solution {
public:
int maxPoints(vector
&points) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
unordered_map
mp; int maxNum = 0; for(int i = 0; i < points.size(); i++) { mp.clear(); mp[INT_MIN] = 0; int duplicate = 1; for(int j = 0; j < points.size(); j++) { if(j == i) continue; if(points[i].x == points[j].x && points[i].y == points[j].y) { duplicate++; continue; } float k = points[i].x == points[j].x INT_MAX : (float)(points[j].y - points[i].y)/(points[j].x - points[i].x); mp[k]++; } unordered_map
::iterator it = mp.begin(); for(; it != mp.end(); it++) if(it->second + duplicate > maxNum) maxNum = it->second + duplicate; } return maxNum; } };
注意:
0、points中重复出现的点。
1、int maxNum = 0;
初始化,以防points.size() ==0的情况。
2、mp[INT_MIN] = 0;
保证poins中只有一个结点,还有points中只有重复元素时,mp中没有元素。这两种极端情况。
3、int duplicate = 1;
duplicate记录重复点的数量,初始化为1,是因为要把当前的点points[i]加进去。
4、float k = points[i].x == points[j].x INT_MAX : (float)(points[j].y - points[i].y)/(points[j].x - points[i].x);
计算斜率,如果直线和y轴平行,就取INT_MAX,否则就取(float)(points[j].y - points[i].y)/(points[j].x - points[i].x)
一开始把(float)(points[j].y - points[i].y)/(points[j].x - points[i].x)写做(float)((points[j].y - points[i].y)/(points[j].x - points[i].x))一直就不对,后来才想明白,注意注意!
参考:
http://fisherlei.blogspot.com/2013/12/leetcode-max-points-on-line-solution.html