Leetcode First Missing Positive 三个思路

2014-11-24 03:04:31 · 作者: · 浏览: 3

First Missing Positive

Given an unsorted integer array, find the first missing positive integer.

For example,
Given [1,2,0] return 3,
and [3,4,-1,1] return 2.

Your algorithm should run in O(n) time and uses constant space.

这条题目虽然简单,但是思路还是很多的,可以开拓一下思路。

下面三种思路都是O(n)时间复杂度,测试运行时间基本上都没区别:

1 排序之后查找

2 把出现的数值放到与下标一致的位置,再判断什么位置最先出现不连续的数值,就是答案了。

3 和2差不多,把出现过的数值的下标位置做好标识,如果没有出现过的数组的下标就没有标识,那么这个就是答案。

第一个思路最简单了:

class Solution {
public:
	int firstMissingPositive(int A[], int n) {
		sort(A, A+n);
		int res = 0;
		int i = 0;
		while (i
  
   0 && A[i] == A[i-1]) continue;
			if (A[i] - res != 1) return res+1;
			else res = A[i];
		}
		return res+1;
	}
};
  


下面是参考了leetcode上的程序,思路2:

http://discuss.leetcode.com/questions/219/first-missing-positive

int firstMissingPositive2(int A[], int n) {
		for (int i=0; i
  
    0 && A[i] < n)
			{
				//if (A[i]-1 != i && A[A[i]-1] != A[i])根本不用那么多条件就可以了。
				//因为只要是已经到位了的元素即:A[i]-1==i了,那么判断如果有重复元素
				//必定有A[A[i]-1] == A[i];两个条件根本就差不多一回事
				//增加多了判断反而很难理解
				if (A[A[i]-1] != A[i])
				{
					swap(A[A[i]-1], A[i]);
					i--;
				}
			}
		}

		for (int j=0; j
    
    

也是思路二,不过上面的是处理下标从1开始,下面的程序是处理下标从0开始的:

int firstMissingPositive3(int A[], int n) {
		int i = 0;
		while (i < n) {
			//逐个把A[i]放到A[i]位置的思想
			//1:找到一个A[i]是在0到n范围的就放到相应位置
			//2:没找到的直接跳过
			//简单来说:就是把数字与下标对应起来
			if (A[i] >= 0 && A[i] < n && A[A[i]] != A[i])
				swap(A[i], A[A[i]]);
			else i++;
		}
		int k = 1;
		while (k < n && A[k] == k) k++;
		if (n == 0 || k < n) return k;
		else return A[0] == k   k + 1 : k;
	}

思路三,好像稍微复杂一点。

int firstMissingPositive4(int A[], int n) {
		if(n <= 0)
			return 1;
		int intOutOfRange = n + 2;
		//first run, turn every negetive value into an impossible positive value
		//make every value in A is positive
		for(int i = 0 ; i < n ; ++ i) {
			if(A[i] <= 0)
				A[i] = intOutOfRange;
		}
		//second run, make A[] as a hash table, A[i] indicate the presence of i + 1
		//the way is that, if k in [1,n] is in A[], then turn A[k -1] to negetive
		for(int i = 0 ; i < n ; ++i) {
			int ai = A[i];
			int absi = abs(ai);
			if(absi <= n)
				A[absi-1] = -abs(A[absi-1]);
		}
		//third run, if A[i] is positive, from step 2, we know that i + 1 is missing.
		for(int i = 0 ; i < n ; ++i) {
			if(A[i] > 0)
				return i + 1;
		}
		//all int from 1 to n is present, then return n + 1
		return n+1;
	}