最小生成树之Kruskal法

2014-11-24 03:30:50 · 作者: · 浏览: 0

在图论中,树是指无回路存在的连通图。一个连通图的生成树是指包含了所有顶点的树。如果把生成树的边的权值总和作为生成树的权,那么权值最小的生成树就称为最小生成树。因为最小生成树在实际中有很多应用,所以我们有必要了解怎样生成最小生成树。构造最小生成树的两种常用方法:Kruskal算法、Prim算法。本文介绍Kruskal算法,Prim算法在下篇文章中介绍。

Kruskal算法是从另一条途径来求网络的的最小生成树。设G=(V, E)是一个有n个顶点的连通图,则令最小生成树的初值状态为只有n个顶点而无任何边的非连通图T=(V, {空集}),此时图中每个顶点自成一个连通分量。按照权值递增的顺序依次选择E中的边,若该边依附于T中两个不同的连通分量,则将此边加入TE中,否则舍去此边而选择下一条代价最小的边,直到T中所有顶点都在同一连通分量上为止。这时的T,便是G的一棵最小生成树。

物理老师曾说过,图像比文字的信息量大得多,这可以从一幅图像和一篇文章所占电脑的存储空间大小明显得出。因此我们可以同下面的图解过程了解Kruskal算法的思想:

\

在该算法中,每次都要寻找最短边,如果用邻接矩阵实现的话,则需要对整个矩阵扫描一遍,时间复杂度较高,如果采用邻接表的话,由于每条边都被连接两次,使得寻找时间加倍。所以采用如下结构体:

//图的存储结构体
typedef struct
{
	int startvex,endvex;//边的两个顶点
	int length;//边长
	int sign;//是否被选择,1表示被选择,0表示未被选择,2表示选择后形成环,被抛弃
}edge;

在该算法中,关键点在于如何避免环路。因此我在程序中用flag1数组来标记顶点是否被选中,因为每当选择了一条边后,该边的两个顶点就被选定,如果选择的一条边的两个顶点都已经被选定,说明如果选择该边,就会构成环。

具体的程序实现如下:

#include
  
   
#define M 10 //边数
#define N 6  //顶点数 

//图的存储结构体
typedef struct
{
	int startvex,endvex;//边的两个顶点
	int length;//边长
	int sign;//是否被选择,1表示被选择,0表示未被选择,2表示选择后形成环,被抛弃
}edge;
	edge T[M];
	int flag1[N];//标记顶点是否已被选中
void Kruskal(edge T[M],int *flag1)
{
	int i,j,k,l,min;
	int a[M]={0,0,0,1,1,1,2,3,3,4};//边的两个顶点及边的长度
	int b[M]={1,4,5,2,3,5,3,4,5,5};
	int c[M]={10,19,21,5,6,11,6,18,14,33};

	for(i=0;i
   
    

程序的结果与上面的图解的结果稍有不同,但是正确的,因为最小生成树有时候是不唯一的。


注:如果程序出错,可能是使用的开发平台版本不同,请点击如下链接: 解释说明