USACO The Clocks

2014-11-24 07:41:42 · 作者: · 浏览: 4

操作间没有次序关系,同一个操作最多重复3次。。。

可以直接暴力。。。

The Clocks
IOI'94 - Day 2
Consider nine clocks arranged in a 3x3 array thusly:
|-------|    |-------|    |-------|    
|       |    |       |    |   |   |    
|---O   |    |---O   |    |   O   |          
|       |    |       |    |       |           
|-------|    |-------|    |-------|    
    A            B            C

|-------|    |-------|    |-------|
|       |    |       |    |       |
|   O   |    |   O   |    |   O   |
|   |   |    |   |   |    |   |   |
|-------|    |-------|    |-------|
    D            E            F

|-------|    |-------|    |-------|
|       |    |       |    |       |
|   O   |    |   O---|    |   O   |
|   |   |    |       |    |   |   |
|-------|    |-------|    |-------|
    G            H            I

The goal is to find a minimal sequence of moves to return all the dials to 12 o'clock. Nine different ways to turn the dials on the clocks are supplied via a table below; each way is called a move. Select for each move a number 1 through 9 which will cause the dials of the affected clocks (see next table) to be turned 90 degrees clockwise.

Move Affected clocks
1 ABDE
2 ABC
3 BCEF
4 ADG
5 BDEFH
6 CFI
7 DEGH
8 GHI
9 EFHI

Example

Each number represents a time according to following table:
9 9 12       9 12 12       9 12 12        12 12 12      12 12 12 
6 6 6  5 ->  9  9  9  8->  9  9  9  4 ->  12  9  9  9-> 12 12 12 
6 3 6        6  6  6       9  9  9        12  9  9      12 12 12 

[But this might or might not be the `correct' answer; see below.]

PROGRAM NAME: clocks

INPUT FORMAT

Lines 1-3: Three lines of three space-separated numbers; each number represents the start time of one clock, 3, 6, 9, or 12. The ordering of the numbers corresponds to the first example above.

SAMPLE INPUT (file clocks.in)

9 9 12
6 6 6
6 3 6

OUTPUT FORMAT

A single line that contains a space separated list of the shortest sequence of moves (designated by numbers) which returns all the clocks to 12:00. If there is more than one solution, print the one which gives the lowest number when the moves are concatenated (e.g., 5 2 4 6 < 9 3 1 1).

SAMPLE OUTPUT (file clocks.out)

4 5 8 9


USACO Gateway | Comment or Question


/*
    ID:qhn9992
    PROG:clocks
    LANG:C++11
*/
#include 
  
   
#include 
   
     #include 
    
      #include 
     
       using namespace std; int a[10],c[10]; int b[10][10] ={ 0,0,0,0,0,0,0,0,0,0, 1,1,0,1,1,0,0,0,0,0, 1,1,1,0,0,0,0,0,0,0, 0,1,1,0,1,1,0,0,0,0, 1,0,0,1,0,0,1,0,0,0, 0,1,0,1,1,1,0,1,0,0, 0,0,1,0,0,1,0,0,1,0, 0,0,0,1,1,0,1,1,0,0, 0,0,0,0,0,0,1,1,1,0, 0,0,0,0,1,1,0,1,1,0 }; int main() { freopen("clocks.in","r",stdin); freopen("clocks.out","w",stdout); int cnt=0; for(int i=1;i<=9;i++) { scanf("%d",a+i); a[i]=(a[i]/3)%4; } for(c[1]=0;c[1]<4;c[1]++) { for(c[2]=0;c[2]<4;c[2]++) { for(c[3]=0;c[3]<4;c[3]++) { for(c[4]=0;c[4]<4;c[4]++) { for(c[5]=0;c[5]<4;c[5]++) { for(c[6]=0;c[6]<4;c[6]++) { for(c[7]=0;c[7]<4;c[7]++) { for(c[8]=0;c[8]<4;c[8]++) { for(c[9]=0;c[9]<4;c[9]++) { ///check.... bool flag=true; for(int i=1;i<=9;i++) { int t=a[i]; for(int j=1;j<=9;j++) { t+=b[j][i-1]*c[j]; } t=t%4; if(t) { flag=false; break; } } if(flag) { for(int i=1;i<=9;i++) { while(c[i]--) { if(flag) { flag=false; } else putchar(32); printf("%d",i); } } putchar(10); return 0; } else continue; } } } } } } } } } return 0; }