Problem D
Knights in FEN
Input: standard input
Output: standard output
Time Limit: 10 seconds
There are black and white knights on a 5 by 5 chessboard. There are twelve of each color, and there is one square that is empty. At any time, a knight can move into an empty square as long as it moves like a knight in normal chess (what else did you expect ).
Given an initial position of the board, the question is: what is the minimum number of moves in which we can reach the final position which is:

Input< http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vc3Ryb25nPjwvcD4KPHA+Rmlyc3QgbGluZSBvZiB0aGUgaW5wdXQgZmlsZSBjb250YWlucyBhbiBpbnRlZ2VyIE4gKE48MTQpIHRoYXQgaW5kaWNhdGVzIGhvdyBtYW55IHNldHMgb2YgaW5wdXRzIGFyZSB0aGVyZS4gVGhlIGRlc2NyaXB0aW9uIG9mIGVhY2ggc2V0IGlzIGdpdmVuIGJlbG93OjwvcD4KPHA+RWFjaCBzZXQgY29uc2lzdHMgb2YgZml2ZSBsaW5lczsgZWFjaCBsaW5lIHJlcHJlc2VudHMgb25lIHJvdyBvZiBhIGNoZXNzYm9hcmQuIFRoZSBwb3NpdGlvbnMgb2NjdXBpZWQgYnkgd2hpdGUga25pZ2h0cyBhcmUgbWFya2VkIGJ5IDAgYW5kIHRoZSBwb3NpdGlvbnMgb2NjdXBpZWQgYnkgYmxhY2sga25pZ2h0cyBhcmUgbWFya2VkIGJ5IDEuIFRoZSBzcGFjZSBjb3JyZXNwb25kcyB0byB0aGUgZW1wdHkgc3F1YXJlIG9uIGJvYXJkLjwvcD4KPHA+VGhlcmUgaXMgbm8gYmxhbmsgbGluZSBiZXR3ZWVuIHRoZSB0d28gc2V0cyBvZiBpbnB1dC48L3A+CjxwPlRoZSBmaXJzdCBzZXQgb2YgdGhlIHNhbXBsZSBpbnB1dCBiZWxvdyBjb3JyZXNwb25kcyB0byB0aGlzIGNvbmZpZ3VyYXRpb246PC9wPgo8Y2VudGVyPgo8cD48aW1nIHdpZHRoPQ=="206" height="207" src="https://www.cppentry.com/upload_files/article/49/1_yhdrh__.jpg" alt="\">
Output
For each set your task is to find the minimum number of moves leading from the starting input configuration to the final one. If that number is bigger than 10, then output one line stating
Unsolvable in less than 11 move(s).
otherwise output one line stating
Solvable in n move(s).
where n <= 10.
The output for each set is produced in a single line as shown in the sample output.
Sample Input
2
01011
110 1
01110
01010
00100
10110
01 11
10111
01001
00000
Sample Output
Unsolvable in less than 11 move(s).
Solvable in 7 move(s).
(Problem Setter: Piotr Rudnicki, University of Alberta, Canada)
“A man is as great as his dreams.”
题意:给出一个状态图,移动其中的骑士恢复到初始的状态。
典型的隐式图搜索问题,BFS搜索+哈希,哈希我是用的set实现的,另外要注意的是国际象棋中骑士走的是日字。
#include#include #include #include using namespace std; typedef int state[25]; const int maxn=5000000; const int dx[]={1,2,2,1,-1,-2,-2,-1}; const int dy[]={-2,-1,1,2,2,1,-1,-2}; state st[maxn]; int dist[maxn]; int front,rear,s; set vis; state goal={1,1,1,1,1,0,1,1,1,1,0,0,2,1,1,0,0,0,0,1,0,0,0,0,0}; int try_to_insert(int s)//哈希函数 { int v=0; for(int i=0;i<25;i++) v=v*2+st[s][i]; if(vis.count(v))return 0; vis.insert(v); return 1; } int bfs() { front=1,rear=2; vis.clear(); while(front 10) return -1;//剪枝,超过10步认为不可达 if(memcmp(goal,p,sizeof(p))==0) return front; int i,j,x,y; for(i=0;i<25;i++) if(st[front][i]==2) break; int z=i; x=i/5,y=i%5; for(i=0;i<8;i++) { int newx=x+dx[i]; int newy=y+dy[i]; if(newx>=0&&newx<5&&newy>=0&&newy<5) { state &u=st[rear]; memcpy(&u,&p,sizeof(p)); u[x*5+y]=u[newx*5+newy]; u[newx*5+newy]=2; dist[rear]=dist[front]+1; if(try_to_insert(rear)) rear++; } } front++; } } int main() { cin>>s; string str; getline(cin,str); while(s--) { memset(dist,0,sizeof(dist)); int i,j; for(i=0;i<5;i++) { getline(cin,str); for(j=0;j<5;j++) { if(str[j]!=' ') st[1][i*5+j]=str[j]-'0'; else st[1][i*5+j]=2; } } int d=bfs(); if(d<=0) cout<<"Unsolvable in less than 11 move(s)."<