| Time Limit: 15000MS | Memory Limit: 228000K | |
| Total Submissions: 14089 | Accepted: 3975 | |
| Case Time Limit: 5000MS | ||
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .Output
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
跟以前一个题目很相似,不过那个有五堆,枚举一二堆合并堆,三四堆合并堆,然后再二分第五堆。这个直接将前两堆合并为1堆,后两堆合并为一堆,枚举第一堆,二分第二堆。
分析时间复杂度,O(4000*4000*log2(4000*4000)),不过这个是最优的时候,二分的代码写得并不好,找到边界之后需要遍历,然后依次再移动,假如合并之后a和b全为0,那时间复杂度就远远不止这点了。变为了O(10^14)........数据比较水。每次二分找的时候可以加个标记,这样时间复杂度会降下来,自己就没实现这个了。。空间也给了很大,几千万的数组是妥妥可以放的。
题目地址:4 Values whose Sum is 0
AC代码:
#include#include #include using namespace std; int a[16000005]; //第一堆 int b[16000005]; //第二堆 int p[4005][4]; int t; int erfen(int x) { int cnt=0; int l=0,r=t-1,mid; while(r>l) { mid=(l+r)>>1; if(b[mid]>=x) r=mid; else l=mid+1; } while(b[l]==x&&l >n) { res=0; for(i=0;i