【题目】
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks MarcZ http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vcyBmb3IgY29udHJpYnV0aW5nIHRoaXMgaW1hZ2UhPC9wPgo8YnI+CjxoND6hvszi0uKhvzwvaDQ+CjxwPrj4tqhuuPa3x7i61fvK/aOstPqx7dK7uPbW+de0zbyjrMO/0ru49tb519O1xL/ttsjOqjGjrLzGy+PPwtPq1q6689b517TNvMTc17C24MnZy66jvzxicj4KPC9wPgo8cD7A/cjno7o8L3A+CjxwPlswLDEsMCwyLDEsMCwxLDMsMiwxLDIsMV0gILe1u9ggNjwvcD4KPHA+ICAgIDxpbWcgc3JjPQ=="https://www.cppentry.com/upload_files/article/49/1_iaglx__.png" alt="\">
上述柱状图是由数组表示[0,1,0,2,1,0,1,3,2,1,2,1]。在这种情况下,6个单位的雨水(蓝色部分)被装。
【分析】
对于每个柱子,找到其左右两边最高的柱子,该柱子能容纳的面积就是 min(leftMostHeight,rightMostHeight) - height。所以,
1. 从左往右扫描一遍,对于每个柱子,求取左边最大值;
2. 从右往左扫描一遍,对于每个柱子,求最大右值;
3. 再扫描一遍,把每个柱子的面积并累加。
也可以,
1. 扫描一遍,找到最高的柱子,这个柱子将数组分为两半;
2. 处理左边一半;
3. 处理右边一半。
【代码】
/********************************* * 日期:2014-01-20 * 作者:SJF0115 * 题号: Trapping Rain Water * 来源:http://oj.leetcode.com/problems/trapping-rain-water/ * 结果:AC * 来源:LeetCode * 总结: **********************************/ #include#include #include using namespace std; class Solution { public: int trap(int A[], int n) { if(A == NULL || n < 1)return 0; int i; int* leftMostHeight = (int*)malloc(sizeof(int)*n); int* rightMostHeight = (int*)malloc(sizeof(int)*n); int maxHeight = 0; for(i = 0; i < n;i++){ leftMostHeight[i] = maxHeight; if(maxHeight < A[i]){ maxHeight = A[i]; } } maxHeight = 0; for(i = n-1;i >= 0;i--){ rightMostHeight[i] = maxHeight; if(maxHeight < A[i]){ maxHeight = A[i]; } } int water = 0; for(i =0; i < n; i++){ int curWater = min(leftMostHeight[i],rightMostHeight[i]) - A[i]; if(curWater > 0){ water += curWater; } } return water; } }; int main() { Solution solution; int result; int A[] = {0,1,0,2,1,0,1,3,2,1,2,1}; result = solution.trap(A,12); cout<
【代码2】
class Solution { public: int trap(int A[], int n) { int *max_left = new int[n](); int *max_right = new int[n](); for (int i = 1; i < n; i++) { max_left[i] = max(max_left[i - 1], A[i - 1]); max_right[n - 1 - i] = max(max_right[n - i], A[n - i]); } int sum = 0; for (int i = 0; i < n; i++) { int height = min(max_left[i], max_right[i]); if (height > A[i]) { sum += height - A[i]; } } delete[] max_left; delete[] max_right; return sum; } };
【代码3】
思路2class Solution { public: //时间复杂度 O(n),空间复杂度 O(1) int trap(int A[], int n) { // 最高的柱子,将数组分为两半 int max = 0; for (int i = 0; i < n; i++){ if (A[i] > A[max]) max = i; } int water = 0; for (int i = 0, leftMaxHeight = 0; i < max; i++){ if (A[i] > leftMaxHeight){ leftMaxHeight = A[i]; } else { water += leftMaxHeight - A[i]; } } for (int i = n - 1, rightMaxHeight = 0; i > max; i--){ if (A[i] > rightMaxHeight){ rightMaxHeight = A[i]; } else{ water += rightMaxHeight - A[i]; } } return water; } };
【代码4】
//第4种解法,用一个栈辅助,小于栈顶的元素压入,大于等于栈顶就把栈里所有小于或等于当 //前值的元素全部出栈处理掉。 // LeetCode, Trapping Rain Water // 用一个栈辅助,小于栈顶的元素压入,大于等于栈顶就把栈里所有小于或 // 等于当前值的元素全部出栈处理掉,计算面积,最后把当前元素入栈 // 时间复杂度 O(n),空间复杂度 O(n) class Solution { public: int trap(int a[], int n) { stack> s; int water = 0; for (int i = 0; i < n; ++i) { int height = 0; // 将栈里比当前元素矮或等高的元素全部处理掉 while (!s.empty()) { int bar = s.top().first; int pos = s.top().second; // bar, height, a[i] 三者夹成的凹陷 water += (min(bar, a[i]) - height) * (i - pos - 1); height = bar; if (a[i] < bar) // 碰到了比当前元素高的,跳出循环 break; else s.pop(); // 弹出栈顶,因为该元素处理完了,不再需要了 } s.push(make_pair(a[i], i)); } return water; } };