To the Max
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.As an example, the maximal sub-rectangle of the array: 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner: 9 2 -4 1 -1 8 and has a sum of 15. Input The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].Output Output the sum of the maximal sub-rectangle.Sample Input 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 Sample Output 15 Source Greater New York 2001 |
题意:
给你一个数字矩阵。要你找出一个子矩阵。使得该矩阵的和比任意其它子矩阵的和都大。求出最大值。
思路:
对于一维的最大连续和肯定很简单。dp[i]=max(arr[i],dp[i-1]+arr[i])。dp[i]表示最大连续和包含arr[i]的最大值。
那么二维就推广下。枚举子矩阵的上下边。把两边间的数字压缩成一条线就可以按一维处理了。
详细见代码:
#include#include #include #include #include #include #include #include #include #include #include