UVa 10870 Recurrences / 矩阵快速幂

2014-11-24 08:25:51 · 作者: · 浏览: 0

给你一个数列的前d项 第n项(n > d) f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d.

n很大 可以构造一个矩阵

f(n) = A*f(n-1)

例如n=5

0   1   0   0   0             f[1]                           f[2]

0   0   1   0   0             f[2]                           f[3]

0   0   0   1   0      *      f[3]            =              f[4]                   

0   0   0   0   1             f[4]                           f[5]

a5  a4  a3  a2  a1            f[5]                           f[6]


f[n] = A^(n-d)*f[d];f[n] = A^(n-d)*f[d];

所以可以快速幂出A矩阵的n-d次 在乘以f[d]

#include 
  
   
#include 
   
     const int maxn = 20; struct Matrix { long long a[maxn][maxn]; }; Matrix a, c; long long b[maxn]; long long n, m; int d; Matrix matrix(Matrix x, Matrix y) { Matrix z; memset(z.a, 0, sizeof(z.a)); for(int i = 1; i <= d; i++) { for(int j = 1; j <= d; j++) { for(int k = 1; k <= d; k++) { z.a[i][j] += x.a[i][k] * y.a[k][j]; z.a[i][j] %= m; } } } return z; } void matrix_pow(long long n) { while(n) { if(n&1) c = matrix(c, a); a = matrix(a, a); n >>= 1; } } int main() { while(scanf("%d %d %d", &d, &n, &m), d || n || m) { memset(a.a, 0, sizeof(a.a)); memset(c.a, 0, sizeof(c.a)); for(int i = d; i >= 1; i--) scanf("%d", &a.a[d][i]); for(int i = 1; i <= d; i++) scanf("%d", &b[i]); for(int i = 1; i < d; i++) a.a[i][i+1] = 1; for(int i = 1; i <= d; i++) c.a[i][i] = 1; long long ans = 0; if(d < n) { matrix_pow(n-d);//n-d个矩阵a相乘存在c c初始化为单位矩阵 for(int i = 1;i <= d; i++) { ans += c.a[d][i]*b[i]; ans %= m; } } else ans = b[n]%m; printf("%d\n", ans); } return 0; } /* 1 1 100 2 1 2 10 100 1 1 1 1 3 2147483647 12345 12345678 0 12345 1 2 3 0 0 0 */