这个题是求原根的个数。所谓原根,意思是给定一个数n,存在数g,g^j能够产生乘法群Zn*中所有的数字。即g^j = {x|x与n互质,
1<=x
因此可以得到,原根的个数是p-1的乘法群中元素的个数,也就是欧拉函数(p-1)。
代码如下:
#include
#include
#define MAX (5000000)
bool bPrime[MAX];
void InitPrime()
{
int nMax = sqrt((double)MAX) + 1;
bPrime[0] = bPrime[1] = true;
for (int i = 2; i <= nMax; ++i)
{
if (!bPrime[i])
{
for (int j = 2 * i; j < MAX; j += i)
{
bPrime[j] = true;
}
}
}
}
bool IsPrime(int nN)
{
if (nN < MAX)return !bPrime[nN];
int nMax = sqrt((double)nN) + 1;
for (int i = 2; i <= nMax; ++i)
{
if (nN % i == 0)
return false;
}
return true;
}
{
int nN;
InitPrime();
while (scanf("%d", &nN) == 1)
{
nN--;
int nAns = 1;
if (IsPrime(nN))
{
nAns = nN - 1;
}www.2cto.com
else
{
for (int i = 2; i <= nN; ++i)
{
if (nN % i == 0)
{
nAns *= i - 1;
nN /= i;
while (nN % i == 0)
{
nAns *= i;
nN /= i;
}
if (IsPrime(nN))
{
nAns *= nN - 1;
break;
}
}
}
}
printf("%d\n", nAns);
}
return 0;
}