设为首页 加入收藏

TOP

一道H-number 数论实例
2014-02-08 13:37:04 来源: 作者: 【 】 浏览:184
Tags:一道 H-number  数论 实例
    Description
    This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.
    An H -number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,… are the H -numbers. For this problem we pretend that these are the only numbers. The H -numbers are closed under multiplication.
    As with regular integers, we partition the H -numbers into units, H -primes, and H -composites. 1 is the only unit. An H -number h is H -prime if it is not the unit, and is the product of two H -numbers in only one way: 1 × h. The rest of the numbers are H -composite.
    For examples, the first few H -composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.
    Your task is to count the number of H -semi-primes. An H -semi-prime is an H -number which is the product of exactly two H -primes. The two H -primes may be equal or different. In the example above, all five numbers areH -semi-primes. 125 = 5 × 5 × 5 is not an H -semi-prime, because it's the product of three H -primes.
    Input
    Each line of input contains an H -number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.
    Output
    For each inputted H -number h, print a line stating h and the number of H -semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.
    Sample Input
    21
    85
    789
    0
    题意:先定义一些数:
    1、H-number:可以写成4k+1的数,k为整数
    2、H-primes:只能分解成1*本身,不能分解成其他的H-number
    3、H-semi-primes:能够恰好分解成两个H-primes的乘积,且只能是两个数的乘积。输出1-N之间有多少个H-semi-primes.
    解法:类似于筛法求素数。先筛出H-primes,然后再枚举每两个H-primes的乘积,筛出H-semi-primes.最后统计1-Max之间的H-semi-primes的个数,保存在数组中。
    #include
    #include
    #include
    const int Max = 1000010;
    int H_semi_prime[Max];
    void solve()
    {
    int i, j;
    memset(H_semi_prime, 0, sizeof(H_semi_prime));
    for(i = 5; i <= 1000001; i += 4)
    for(j = 5; j <= 1000001; j += 4)
    {
    int product = i * j;
    if(product > Max)
    break;
    if(H_semi_prime[i] == 0 && H_semi_prime[j] == 0)
    H_semi_prime[product] = 1;
    else
    H_semi_prime[product] = -1;
    }
    int cnt = 0;
    for(i = 0; i <= 1000001; i++)
    {
    if(H_semi_prime[i] == 1)
    cnt++;
    H_semi_prime[i] = cnt;
    }
    }
    int main()
    {
    int n;
    solve();
    while(~scanf("%d",&n) && n)
    {
    printf("%d %d\n",n, H_semi_prime[n]);
    }
    return 0;
    }

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇C++和C#之间互相调用经验详谈 下一篇C++空类中的默认函数

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·PostgreSQL 索引 - (2025-12-25 22:20:43)
·MySQL Node.js 连接 (2025-12-25 22:20:41)
·SQL 撤销索引、表以 (2025-12-25 22:20:38)
·Linux系统简介 (2025-12-25 21:55:25)
·Linux安装MySQL过程 (2025-12-25 21:55:22)