1353. Milliard Vasya's Function
Time limit: 1.0 secondMemory limit: 64 MB
Vasya is the beginning mathematician. He decided to make an important contribution to the science and to become famous all over the world. But how can he do that if the most interesting facts such as Pythagor’s theorem are already proved? Correct! He is to think out something his own, original. So he thought out the Theory of Vasya’s Functions. Vasya’s Functions (VF) are rather simple: the value of the Nth VF in the point S is an amount of integers from 1 to N that have the sum of digits S. You seem to be great programmers, so Vasya gave you a task to find the milliard VF value (i.e. the VF with N = 109) because Vasya himself won’t cope with the task. Can you solve the problem?
Input
Integer S (1 ≤ S ≤ 81).Output
The milliard VF value in the point S.Sample
| input | output |
|---|---|
1 |
10 |
Problem Source: USU Junior Championship March'2005
//0.031 206 KB #include#include using namespace std; int dp[10][107]; int main() { int n,j; memset(dp,0,sizeof(dp)); for(int i=1;i<=9;i++)dp[1][i]++;//从最高位往下找,最高位只能使1~9 for(int i=2;i<=9;i++) for(int j=1;j<=81;j++) { dp[i][j]=dp[i-1][j];//第一部分 for(int k=1;k<=9;k++)//第二部分 if(j-k>0)dp[i][j]+=dp[i-1][j-k]; } while(scanf("%d",&n)!=EOF) { int sum=0; if(n==1)printf("10\n"); else { for(int i=1;i<=9;i++)//将各个位数符合条件的加起来 sum+=dp[i][n]; printf("%d\n",sum); } } return 0; }