题目:
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.push(x) -- Push element x onto stack.
pop() -- Removes the element on top of the stack.
top() -- Get the top element.
getMin() -- Retrieve the minimum element in the stack.
解决方案一:
class MinStack {
private Stack
mStack = new Stack
(); private Stack
mMinStack = new Stack
(); public void push(int x) { mStack.push(x); if (mMinStack.size() != 0) { int min = mMinStack.peek(); if (x <= min) { mMinStack.push(x); } } else { mMinStack.push(x); } } public void pop() { int x = mStack.pop(); if (mMinStack.size() != 0) { if (x == mMinStack.peek()) { mMinStack.pop(); } } } public int top() { return mStack.peek(); } public int getMin() { return mMinStack.peek(); } }
ps:方案一的疑惑
第一次见到这个解决方案的时候,总是感觉怪怪的总觉它是有问题的,特别是push方法的这两句 int min = mMinStack.peek();mMinStack.push(x);
} 之后在一篇博文里给了我解决这个疑惑的答案。
博文里的分析:
这道题的关键之处就在于 minStack 的设计,push() pop() top() 这些操作Java内置的Stack都有,不必多说。 我最初想着再弄两个数组,分别记录每个元素的前一个比它大的和后一个比它小的,想复杂了。 第一次看上面的代码,还觉得它有问题,为啥只在 x方案二(效率较高,容易理解):
class MinStack { Node top = null; public void push(int x) { if (top == null) { top = new Node(x); top.min = x; } else { Node temp = new Node(x); temp.next = top; top = temp; top.min = Math.min(top.next.min, x); } } public void pop() { top = top.next; return; } public int top() { return top == null ? 0 : top.val; } public int getMin() { return top == null ? 0 : top.min; } } class Node { int val; int min; Node next; public Node(int val) { this.val = val; } }