Given an array of size n, find the majority element. The majority element is the element that appears more than ? n/2 ? times.
You may assume that the array is non-empty and the majority element always exist in the array.
找出数组中出现次数超过数组长度一半的值。
Solution:
- Runtime: O(n2)― Brute force solution: Check each element if it is the majority element.
- Runtime: O(n), Space: O(n)― Hash table: Maintain a hash table of the counts of each element, then find the most common one.
- Runtime: O(n log n)― Divide and conquer: Divide the array into two halves, then find the majority element A in the first half and the majority element B in the second half. The global majority element must either be A or B. If A == B, then it automatically becomes the global majority element. If not, then both A and B are the candidates for the majority element, and it is suffice to check the count of occurrences for at most two candidates. The runtime complexity, T(n) = T(n/2) + 2n = O(n logn).
- Runtime: O(n) ―Moore voting algorithm: We maintain a current candidate and a counter initialized to 0. As we iterate the array, we look at the current element x:
- If the counter is 0, we set the current candidate to x and the counter to 1.
- If the counter is not 0, we increment or decrement the counter based on whether x is the current candidate. After one pass, the current candidate is the majority element. Runtime complexity = O(n)
Moore Voting Algorithm: 该算法要求目标数组存在majority元素(大于n/2),否则需要检验。 算法演示 here. 思路解析: 1. 初始化majorityIndex,并且维护其对应count; 2. 遍历数组,如果下一个元素和当前候选元素相同,count加1,否则count减1; 3. 如果count为0时,则更改候选元素,并且重置count为1; 4. 返回A[majorityIndex] 原理:如果majority元素存在(majority元素个数大于n/2,个数超过数组长度一半),那么无论它的各个元素位置是如何分布的,其count经过抵消和增加后,最后一定是大于等于1的。 如果不能保证majority存在,需要检验。 复杂度:O(N) Attention: 循环时从i = 1开始,从下一个元素开始,因为count已经置1. AC Code:class Solution { public: int majorityElement(vector&num) { //the majority element 存在并且唯一 int majorityIndex = 0; for(int cnt = 1, i = 1; i < num.size(); i++) { num[majorityIndex] == num[i] ? cnt++ : cnt--; if(cnt == 0) { cnt = 1; majorityIndex = i; } } return num[majorityIndex]; } };
检验:/* Function to check if the candidate occurs more than n/2 times */boolisMajority(inta[],intsize,intcand){inti, count = 0;for(i = 0; i < size; i++)if(a[i] == cand)count++;if(count > size/2)return1;elsereturn0;}