HDU 1060 Leftmost Digit (数论)

2015-01-27 06:03:54 · 作者: · 浏览: 8

Leftmost Digit

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13680 Accepted Submission(s): 5239


Problem Description Given a positive integer N, you should output the leftmost digit of N^N.

Input The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).

Output For each test case, you should output the leftmost digit of N^N.

Sample Input
2
3
4

Sample Output
2
2

Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.






题目大意:给正整数n,问n^n的最左面的那位数是多少。


解析:高大上的数论,确实对数学的智商不怎么够用。下为借鉴网上大神的思路:

一个数是由每一位的基数乘以相对应的权值,例如 123456 , 基数"1"的权值为 10^5, 基数 "2" 的权值为 10^4......所以该题要求的就是最高位的基数。 对 x^x 取对数,得 x* ln( x )/ ln( 10 ), 现假设这个值为 X.abcdeefg 那么 10^X 就是 最高位对应的权值,10^ 0.abcdefg 就是最高位的基数。注意这里得到的并不是一个整数,为什么呢? 因为这里是强行将后面位的值也转化到最高位上来了,这有点像大数中,如果不满进制却强行进位,显然那样会进给高位一个小数而不是一个天经地义的整数。得到 10^ 0.abcdefg 后,再用 double floor ( double ) 函数取下整就得到最高位的数值大小了


详解请参见博客:http://www.cnblogs.com/jackge/archive/2013/01/03/2842830. html





AC代码:

#include 
  
   
#include 
   
     #include 
    
      using namespace std; int main(){ // freopen("in.txt", "r", stdin); int t, n; scanf("%d", &t); while(t--){ scanf("%d", &n); double foo = n * log10(double(n)); //需强转 double ans = foo - floor(foo); printf("%d\n", (int)pow(10.0, ans)); } return 0; }