题目:
?
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9].
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16].
This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10].
题意:
给定一组不互相覆盖的间隔数,将一个新的间隔数插入到他们之中(如果必要的话进行合并).
你可以假设这些间隔数起初是根据他们的起始数排好序的.
样例1:
给定[1,3],[6,9],插入并合并[2,5] 得到[1,5],[6,9].
样例2:
给定[1,2],[3,5],[6,7],[8,10],[12,16],插入并合并[4,9] 得到 [1,2],[3,10],[12,16].
这是因为新的间隔数[4,9] 覆盖了[3,5],[6,7],[8,10].
算法分析:
* 结合方法《Merge Intervals》
* 新加入 newInterval ,重新排序后然后按照上面的方法就好
AC代码:
?
public class Solution
{
public List
insert(List
intervals, Interval newInterval) { intervals.add(newInterval); if (intervals == null || intervals.size() <= 1) return intervals; return merge(intervals); } public static List
merge(List
intervals) { if (intervals == null || intervals.size() <= 1) return intervals; // sort intervals by using self-defined Comparator Collections.sort(intervals, new IntervalComparator()); ArrayList
result = new ArrayList
(); Interval prev = intervals.get(0); for (int i = 1; i < intervals.size(); i++) { Interval curr = intervals.get(i); if (prev.end >= curr.start) { // merged case Interval merged = new Interval(prev.start, Math.max(prev.end, curr.end)); prev = merged; } else { result.add(prev); prev = curr; } } result.add(prev); return result; } } class IntervalComparator implements Comparator
{ public int compare(Interval i1, Interval i2) { return i1.start - i2.start; } }
?