POJ 2478-Farey Sequence(筛选法求欧拉函数)

2015-07-20 17:06:18 ? 作者: ? 浏览: 2

?

Farey Sequence Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2478 Appoint description:

Description

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 10 6). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.

Sample Input

2
3
4
5
0

Sample Output

1
3
5
9

?

题意:给定一个数n,求小于或等于n的数中两两互质组成的真分数的个数。

思路:这个博客有关于这道题的推理---->点击打开链接

?

#include 
  
   
#include 
   
     #include 
    
      #include 
     
       #include 
      
        #include 
       
         #include 
        
          #include 
         
           #include 
          
            #include 
           
             #include
             using namespace std; typedef long long LL; const int inf=0x3f3f3f3f; const double pi= acos(-1.0); LL phi[1000010]; LL res[1000010]; void Euler() { int i,j; memset(phi,0,sizeof(phi)); phi[1]=1; for(i=2;i<=1000010;i++) { if(!phi[i]) { for(j=i;j<=1000010;j+=i) { if(!phi[j]) phi[j]=j; phi[j]=phi[j]/i*(i-1); } } } } int main() { int n; Euler(); memset(res,0,sizeof(res)); res[1]=res[2]=1; for(int i=3;i<1000010;i++) res[i]=res[i-1]+phi[i]; while(~scanf("%d",&n)){ if(!n) break; printf("%lld\n",res[n]); } return 0; }
           
          
         
        
       
      
     
    
   
  


?

-->

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: