poj 2155 Matrix 二维树状数组

2015-07-20 17:11:18 来源: 作者: 浏览: 2

?

?

Matrix
Time Limit: 3000MS ? Memory Limit: 65536K
Total Submissions: 19691 ? Accepted: 7387

?

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using not operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format Q x y or C x1 y1 x2 y2, which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng 题意:给一个N*N的矩阵,里面的值不是0,就是1。初始时每一个格子的值为0。
现对该矩阵有两种操作:(共T次)
1.C x1 y1 x2 y2:将左上角为(x1, y1),右下角为(x2, y2)这个范围的子矩阵里的值全部取反。
2.Q x y:查询矩阵中第i行,第j列的值。

国家队集训队论文:武森《浅谈信息学竞赛中的“0”和“1”》

1. 根据这个题目中介绍的这个矩阵中的数的特点不是 1 就是 0,这样我们只需记录每个格子改变过几次,即可判断这个格子的数字。
2. 先考虑一维的情况:
若要修改[x,y]区间的值,其实可以先只修改 x 和 y+1 这两个点的值(将这两个点的值加1)。查询k点的值时,其修改次数即为 sum(cnt[1] + … + cnt[k])。
3. 二维的情况:
道理同一维。要修改范围[x1, y1, x2, y2],只需修改这四个点:(x1,y1), (x1,y2+1), (x2+1,y1), (x2+1,y2+1)。查询点(x,y)的值时,其修改次数为 sum(cnt[1, 1, x, y])。
4. 而区间求和,便可用树状数组来实现。

代码:

?

#include
  
   
#include
   
     #include
    
      #define MAXN 1111 using namespace std; int bit[MAXN][MAXN]; int lowbit(int x){ return x&(-x); } void add(int x,int y,int num){ for(int i=x;i
     
      0;i-=lowbit(i)) for(int j=y;j>0;j-=lowbit(j)) cnt+=bit[i][j]; return cnt; } int main(){ int t,n,m; scanf(%d,&t); while(t--){ scanf(%d %d,&n,&m); memset(bit,0,sizeof(bit)); while(m--){ char op[2]; scanf(%s,op); if(op[0]=='C'){ int x1,y1,x2,y2; scanf(%d %d %d %d,&x1,&y1,&x2,&y2); add(x1,y1,1); add(x1,y2+1,1); add(x2+1,y1,1); add(x2+1,y2+1,1); } else { int x,y; scanf(%d %d,&x,&y); printf(%d ,getsum(x,y)%2); } } puts(); } return 0; } 
     
    
   
  


?

-->

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: