设为首页 加入收藏

TOP

HDU 5185 Equation (线性dp 完全背包)
2015-07-20 17:12:19 来源: 作者: 【 】 浏览:2
Tags:HDU 5185 Equation 线性 完全 背包


Equation

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 64 Accepted Submission(s): 20

Problem Description Gorwin is very interested in equations. Nowadays she gets an equation like this
x1+x2+x3+?+xn=n , and here 0≤xi≤nfor1≤i≤nxi≤xi+1≤xi+1for1≤i≤n?1
For a certain n , Gorwin wants to know how many combinations of xi satisfies above condition.
For the answer may be very large, you are expected output the result after it modular m .
Input Multi test cases. The first line of the file is an integer T indicates the number of test cases.
In the next T lines, every line contain two integer n,m .

[Technical Specification]
1≤T<20
1≤n≤50000
1≤m≤1000000000
Output For each case output should occupies one line, the output format is Case #id: ans, here id is the data number starting from 1, ans is the result you are expected to output.
See the samples for more details. Sample Input
2
3 100
5 100
Sample Output
Case #1: 2
Case #2: 3
Source BestCoder Round #32

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5185

题目大意:问按照题目所给的公式,有多少种不同的方法得到n,方法数对m取余

题目分析:因为n比较大,直接背包,时间空间都不允许,考虑公式性质,最大的情况下获得n,即1~ma求和,ma * (ma + 1) / 2 == n
化简可以得到ma = (sqrt(8n + 1) - 1) / 2,时间空间复杂度均化为nsqrt(n),考虑dp[i][j]表示前i个数字合成数字j的种类数,则转移方程为
dp[i][j] = dp[i - 1][j - i] + dp[i][j - i],前i个数字合成j的种类数等于合成j-i时放了i和没放i两种情况的和,dp[0][0] = 1

#include 
  
   
#include 
   
     #include 
    
      using namespace std; int dp[317][50001]; int main() { int T, n, m; scanf("%d", &T); for(int ca = 1; ca <= T; ca++) { dp[0][0] = 1; scanf("%d %d", &n, &m); int ans = 0, ma = (sqrt(8 * n + 1) - 1) / 2; for(int j = 1; j <= n; j++) for(int i = 1; i <= min(j, ma); i++) dp[i][j] = (dp[i][j - i] + dp[i - 1][j - i]) % m; for(int i = 1; i <= ma; i++) ans = (ans + dp[i][n]) % m; printf("Case #%d: %d\n", ca, ans); } }
    
   
  


】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇HDU 4553 线段树双关键字区间合并 下一篇UVA 1366-Martian Minging(DP)

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·有没有哪些高效的c++ (2025-12-27 08:20:57)
·Socket 编程时 Accep (2025-12-27 08:20:54)
·计算机网络知识点总 (2025-12-27 08:20:52)
·一篇说人话的文章, (2025-12-27 07:50:09)
·Python Web框架哪家 (2025-12-27 07:50:06)