设为首页 加入收藏

TOP

hdu 4635 强连通分量+缩点
2015-07-20 17:15:45 来源: 作者: 【 】 浏览:2
Tags:hdu 4635 连通 分量 +缩点

?

?

Problem Description Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point.


Input The first line of date is an integer T, which is the number of the text cases.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
Output For each case, you should output the maximum number of the edges you can add.
If the original graph is strongly connected, just output -1.
Sample Input
3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4

Sample Output
Case 1: -1
Case 2: 1
Case 3: 15

?

?

/**
hdu 4635  强连通分量+缩点
题目大意:给定一个图,问能最多加多少边使其还不是连通图
解题思路:http://www.xuebuyuan.com/1606580.html
*/
#include 
  
   
#include 
   
     #include 
    
      #include 
     
       using namespace std; typedef long long LL; const int maxn=100005; struct note { int v,next; }edge[maxn*10]; int head[maxn],ip; int st[maxn],ins[maxn],dfn[maxn],low[maxn],cnt_tar,index,top; int in[maxn],out[maxn],num[maxn],belong[maxn]; int m,n; void addedge(int u,int v) { edge[ip].v=v,edge[ip].next=head[u],head[u]=ip++; } void init() { memset(head,-1,sizeof(head)); ip=0; } void tarjan(int u) { dfn[u]=low[u]=++index; st[++top]=u; ins[u]=1; for(int i=head[u];i!=-1;i=edge[i].next) { int v=edge[i].v; if(!dfn[v]) { tarjan(v); low[u]=min(low[u],low[v]); } else if(ins[v]) { low[u]=min(low[u],dfn[v]); } } if(dfn[u]==low[u]) { cnt_tar++; int j; do { j=st[top--]; ins[j]=0; belong[j]=cnt_tar; num[cnt_tar]++; }while(j!=u); } } void solve() { top=0,index=0,cnt_tar=0; memset(dfn,0,sizeof(dfn)); memset(low,0,sizeof(low)); for(int i=1;i<=n;i++) { if(!dfn[i]) tarjan(i); } } int main() { int T,tt=0; scanf(%d,&T); while(T--) { scanf(%d%d,&n,&m); init(); for(int i=1;i<=m;i++) { int u,v; scanf(%d%d,&u,&v); addedge(u,v); } memset(num,0,sizeof(num)); solve(); if(cnt_tar==1) { printf(Case %d: -1 ,++tt); continue; } memset(in,0,sizeof(in)); memset(out,0,sizeof(out)); for(int u=1;u<=n;u++) { for(int i=head[u];i!=-1;i=edge[i].next) { int v=edge[i].v; if(belong[u]==belong[v])continue; out[belong[u]]++; in[belong[v]]++; } } LL all=(LL)n*(n-1)-m; LL ans=0; for(int i=1;i<=cnt_tar;i++) { if(in[i]==0||out[i]==0) { ans=max(ans,all-(LL)num[i]*(n-num[i])); } } printf(Case %d: %I64d ,++tt,ans); } return 0; } 
     
    
   
  


?

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇POJ 1189-钉子和小球(DP) 下一篇cocoapods导致的符号重复问题分析..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·Redis on AWS:Elast (2025-12-27 04:19:30)
·在 Spring Boot 项目 (2025-12-27 04:19:27)
·使用华为开发者空间 (2025-12-27 04:19:24)
·Getting Started wit (2025-12-27 03:49:24)
·Ubuntu 上最好用的中 (2025-12-27 03:49:20)