Description
有一个n个数的数组a,有n个函数,每个函数是返回[li,ri]的和
有两种操作
1 x y:将数组第x个元素值修改为y
2 m n:询问[m,n]函数的和
n,q≤105
Solution
我们可以考虑分块,将函数分为
n??√块
,预处理出每块函数和以及每块函数中每个数算的次数,再用一个树状数组求数组的和
修改时根据每块函数中第x个数出现次数更新答案,树状数组单点修改,询问时随便搞搞就行了
Code
#include
using namespace std; typedef long long LL; const int N = 100010; int n, q, a[N], L[N], R[N], cnt[1500][N], num[1500][N]; LL c[N], sum[N]; inline int read(int &t) { int f = 1;char c; while (c = getchar(), c < '0' || c > '9') if (c == '-') f = -1; t = c - '0'; while (c = getchar(), c >= '0' && c <= '9') t = t * 10 + c - '0'; t *= f; } void add(int i, int x) { for (;i <= n; i += i & -i) c[i] += x; } void change(int i, int x) { add(i, x - a[i]); a[i] = x; } LL ask(int i) { LL t = 0; for (; i; i -= i & -i) t += c[i]; return t; } int main() { read(n); int bl = (int)sqrt(n + 0.5); int S = n / bl + ((n % bl) ? 1 : 0); for (int i = 1; i <= n; ++i) read(a[i]); for (int i = 1; i <= n; ++i) add(i, a[i]); for (int i = 0; i < n; ++i) { read(L[i]), read(R[i]); ++cnt[i / bl][L[i]]; --cnt[i / bl][R[i] + 1]; } for (int i = 0; i < S; ++i) for (int j = 1; j <= n; ++j) { num[i][j] = cnt[i][j] + num[i][j - 1]; sum[i] += 1ull * num[i][j] * a[j]; } read(q); while (q--) { int op, l, r; read(op), read(l), read(r); if (op == 1) { for (int i = 0; i < S; ++i) sum[i] += 1ull * num[i][l] * (r - a[l]); change(l, r); } else { --l, --r; LL ans = 0; int x = l / bl, y = r / bl; if (x == y) for (int i = l; i <= r; ++i) ans += ask(R[i]) - ask(L[i] - 1); else{ x = (l % bl ? x + 1 : x), y = (r + 1) % bl ? y - 1 : y; for (int i = x; i <= y; ++i) ans += sum[i]; while (l % bl) ans += ask(R[l]) - ask(L[l++] - 1); while ((r + 1) % bl) ans += ask(R[r]) - ask(L[r--] - 1); } printf("%llu\n", ans); } } return 0; }