Description
Farmer John has taken his cows on a trip to the city! As the sun sets, the cows gaze at the city horizon and observe the beautiful silhouettes formed by the rectangular buildings.
The entire horizon is represented by a number line with N (1 ≤ N ≤ 40,000) buildings. Building i’s silhouette has a base that spans locations Ai through Bi along the horizon (1 ≤ Ai < Bi ≤ 1,000,000,000) and has height Hi (1 ≤ Hi ≤ 1,000,000,000). Determine the area, in square units, of the aggregate silhouette formed by all N buildings.
Input
Line 1: A single integer: N
Lines 2..N+1: Input line i+1 describes building i with three space-separated integers: Ai, Bi, and Hi
Output
Line 1: The total area, in square units, of the silhouettes formed by all N buildings
Sample Input
4
2 5 1
9 10 4
6 8 2
4 6 3
Sample Output
16
Hint
The first building overlaps with the fourth building for an area of 1 square unit, so the total area is just 3*1 + 1*4 + 2*2 + 2*3 - 1 = 16.
Source
USACO 2007 Open Silver
题目大意
如图所示,在一条水平线上有N个建筑物,建筑物都是长方形的,且可以互相遮盖。给出每个建筑物的左右坐标值Ai,Bi以及每个建筑物的高Hi,需要计算出这些建筑物总共覆盖的面积。
题目数据范围:
建筑物个数N:1 <= N <= 40000
建筑物左右坐标值Ai, Bi:1 <= Ai,Bi <= 10^9
建筑物的高度Hi:1 <= Hi <= 10^9
vczixL/W0NK7uPbM2MritcTM9bz+o6zL+dPQtcS+2NDOtcTSu7Hf1NrSu8z11rHP38nPo6zO0sPHv8nS1LrDusPA+9PD1eK49sz1vP6jutPJ09rL+dPQtcS+2NDO1NrV4sz11rHP38nPtcTNttOwvvnT677Y0M61xNK7uPax37Okz+C1yKGjy/nS1KOsztLDx7/J0tSw0b7Y0M6hsNG5y/WhsbPJPHN0cm9uZz7Wsc/fyc+1xM/fts48L3N0cm9uZz6jrMfSw7/M9c/fts62vNPQ0ru49jxzdHJvbmc+yKjWtTwvc3Ryb25nPqOs1eK49sio1rW+zcrHvtjQzrXEuN+2yEhpoaPEx8O0o6zO0sPHvs2/ydLUwPvTw8/fts7K97340NC0psDto6y8xsvjw+a7/bKivs3P4LWx09q8xsvjtPjIqLXEz9+2zrKio6y8tFMgPSBIICogKEIgqEMgQSmho7WxxLPM9c/fts6xu7bgtM64srjHyrGjqLHIyOfNvNbQtcTP37bOQTJCMaOpo6zWu8ihSNa11+6087XEvfjQ0LzGy+Oho8jnzbwyLjHW0LXEvtjQzsPmu/2yos6qo7pTID0gSDEqKEIxIKhDIEExKSArIEgyICogKEEzIKhDIEIyKSArIEgzICogKEIzIKhDIEEzKSC7+bG+y7zCt8fls/7By6OsztLDx8/W1NrAtL+8wse+38zlyrXP1qGjPC9wPgoKPHA+08nT2szixL/W0L7Y0M61xNfz09LX+LHqtcS3ts6nt8ezo7TzKDEgPD0gQWksQmkgPD0gMTBeOSmjrMjnufu9qMGitPPQoc6qWzEsIDEwXjkptcTP37bOyvfU8rvh1bzTw7Tzwb+1xL/VvOSho87Sw8eyydPD0rvW1jxzdHJvbmc+wOvJoruvPC9zdHJvbmc+tcTLvM/rwLS0psDt1eK49s7KzOKjrNXi1tbLvMK31NrP37bOyve1xMzixL/W0NKyyse+rbOju+HTw7W9tcSho7+8wse1vdK7ubLWu9PQTiA8PSA0MDAwMLj2vtjQzqOsxMfDtKOs1eLQqb7Y0M7Su7my0rLWu9PQMiAqIDQwMDAwID0gODAwMDC49tfz09LX+LHq1rWho87Sw8fK18/IvavV4jgwMDAwuPbX+LHq1rWwtLTz0KHFxdDyo6y21MXF0PK687XE1/ix6tLAtM64s9Po0ru49tDC1/ix6ta1a6OoMSA8PSBrIDw9IDgwMDAwo6mjrNXi0fnO0sPHvs2w0bOktsjOqlsxLCAxMF45KbXEz9+2zsDryaK7r7PJWzEsODAwMDAptcTP37bOwcujrLb41+6687zGy+O94bn7yrGjrNa70OjSqrC01dXQwtf4serWtdXSu9jUrcq81/ix6ta1sqK0+sjrvMbL47y0v8mhozwvcD4KCjxwPr7Z0ru49rzytaW1xMD919OjrLzZyejP1tTa09DI/cz1z9+2zlsyMCw2MCksWzEwLDUwKSxbNSw1NSmho87Sw8e9q9XiyP3M9c/fts61xNfz09K2y7XjvfjQ0MXF0PKjrMbkveG5+86qNSwxMCwyMCw1MCw1NSw2MKGjztLDx72ry/zDx9LAtM64s8nP0MLWtTEsMiwzLDQsNSwgNqGj1eLR+dStyry1xMj9zPXP37bOsbvA68miu6/OqlszLDYpLFsyLDQpLFsxLDUpo6zO0sPHvs2/ydLU1NpbMSw2KbXEv9W85MTattTG5L340NC0psDtwcuho9Xivs3Kx8DryaK7r7XEzf7BpqGjPC9wPgoKPHA+u9i1vdStzsrM4snPwLSjrLWxvtjQzsv5zbbTsLXEz9+2zrG7wOvJoruv0tS686OsztLDx77Nv8nS1L2owaLP37bOyvfBy6Gj0+vWrsewvbK5/bXEs/XKvLuvwtTT0LK7zayjrM/W1NrDv7j2z9+2zsr3tcS92rXjsrvWu8rHvMfCvMbky/m0+rHttcTP37bOyse38bG7uLK4x6OstvjH0tKqvMfCvLG7uLK4x7XEz9+2zrXEyKjWtaGjw7+0zrzTyOvSu7j2vtjQzr7NysfU2s/fts7K98nPsuXI69K7zPW0+MiotcTP37bOo6yy5cjrtcTKtc/Wuf2zzNPr1q7HsLXE0rLT0LK7zayho8jnufu1scewz9+2zs3qyKu4s