题目:
Given a linked list, return the node where the cycle begins. If there is no cycle, return null.
Follow up:
Can you solve it without using extra space?
分析:
首先使用快慢指针技巧,如果fast指针和slow指针相遇,则说明链表存在环路。当fast与slow相遇时,slow肯定没有遍历完链表,而fast已经在环内循环了n圈了(1<=n)设slow走了s步,则fast走了2s步(fast步数还等于s加上环在多转的n圈),设环长为r则:
2s = s + nr
s = nr
设整个链长L,环入口点与相遇点距离为a,起点到环入口点距离为x,则:
x + a = s = nr = (n - 1)r + r = (n - 1)r + L - x
x = (n - 1)r + L - x - a
L -x -a 为相遇点到环入口点的距离,由此可知,从链表开头到环入口点等于n - 1圈内环 + 相遇点到环入口点,于是我们可以从head开始另设一个指针slow2,两个慢指针每次前进一步,他们两个一定会在环入口点相遇。

代码:
/**------------------------------------
* 日期:2015-02-05
* 作者:SJF0115
* 题目: 142.Linked List Cycle II
* 网址:https://oj.leetcode.com/problems/linked-list-cycle-ii/
* 结果:AC
* 来源:LeetCode
* 博客:
---------------------------------------**/
#include
#include
#include
using namespace std; struct ListNode{ int val; ListNode *next; ListNode(int x):val(x),next(NULL){} }; class Solution { public: ListNode *detectCycle(ListNode *head) { if(head == nullptr){ return nullptr; }//if ListNode *slow = head,*fast = head,*slow2 = head; while(fast != nullptr && fast->next != nullptr){ slow = slow->next; fast = fast->next->next; // 相遇点 if(slow == fast){ while(slow != slow2){ slow = slow->next; slow2 = slow2->next; }//while return slow; }//if }//while return nullptr; } };
