设为首页 加入收藏

TOP

hdu1796--How many integers can you find(容斥原理)
2015-07-20 17:24:41 来源: 作者: 【 】 浏览:1
Tags:hdu1796--How many integers can you find 容斥 原理

How many integers can you find Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Appoint description:

Description

Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.

Input

There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0 Output

For each case, output the number.

Sample Input

 12 2
2 3 

Sample Output

 7 


题目大意:给出一个n和一个集合,m个数,问在1到n内 能被m中的数正除的有多少?

可以理解为在1到n内,是m中的数的倍数的数有多少?

在容斥原理中,用二进制数表示第i个数取没取,如果取了奇数个数,加上。 取了偶数个数,减去

#include 
   
    
#include 
    
      #include 
     
       using namespace std ; #define LL long long LL a[12] ; LL n , m , k , i , j , cnt , num , ans ; LL gcd(LL x,LL y) { return x == 0 ? y : gcd(y%x,x) ; } int main() { while(scanf("%lld %lld", &n, &m) != EOF) { ans = 0 ; for(i = 0 ; i < m ; i++) { scanf("%lld", &a[i]) ; if( a[i] == 0 ) { i-- ; m-- ; } } cnt = 1 << m ; for(i = 1 ; i < cnt ; i++) { k = 1 ; num = 0 ; for(j = 0 ; j < m ; j++) { if( 1<
      
       

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇hdu1695--GCD(欧拉函数+容斥原理.. 下一篇hdu 1568 Fibonacci (数论)

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·求navicat for mysql (2025-12-26 13:21:33)
·有哪位大哥推荐一下m (2025-12-26 13:21:30)
·MySQL下载与安装教程 (2025-12-26 13:21:26)
·Linux_百度百科 (2025-12-26 12:51:52)
·Shell 流程控制 | 菜 (2025-12-26 12:51:49)