Problem Description Given a 3-dimension ellipsoid(椭球面)
your task is to find the minimal distance between the original point (0,0,0) and points on the ellipsoid. The distance between two points (x
1,y
1<??http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vc3ViPix6PHN1Yj4xPC9zdWI+KSBhbmQgKHg8c3ViPjI8L3N1Yj4seTxzdWI+Mjwvc3ViPix6PHN1Yj4yPC9zdWI+KSBpcyBkZWZpbmVkIGFzIDxpbWcgc3JjPQ=="https://www.cppentry.com/upload_files/article/49/1_0i1q1__.jpg" alt="\"> Input There are multiple test cases. Please process till EOF. For each testcase, one line contains 6 real number a,b,c(0 < a,b,c,< 1),d,e,f(0 ≤ d,e,f < 1), as described above. It is guaranteed that the input data forms a ellipsoid. All numbers are fit in double. Output For each test contains one line. Describes the minimal distance. Answer will be considered as correct if their absolute error is less than 10-5. Sample Input 1 0.04 0.01 0 0 0 Sample Output 1.0000000 Source 2014 ACM/ICPC Asia Regional Xi'an Online 题意:求椭圆上离圆心最近的点的距离。 思路:模拟退火法,学着网上写的 #include
#include
#include
#include
#include
using namespace std; const int inf = 1e8; const double eps = 1e-8; const int dx[8] = {0,0,1,-1,1,-1,1,-1}; const int dy[8] = {1,-1,0,0,1,1,-1,-1}; double a, b, c, d, e, f; double dis(double x, double y, double z) { return sqrt(x * x + y * y + z * z); } double calz(double x, double y) { double A = c; double B = d * y + e * x; double C = f * x * y + a * x * x + b * y * y - 1.0; double delta = B * B - 4.0 * A * C; if (delta < 0.0) return inf+10.0; delta = sqrt(delta); double z1 = (-B + delta) / (2.0 * A); double z2 = (-B - delta) / (2.0 * A); if (dis(x, y, z1) < dis(x, y, z2)) return z1; return z2; } double solve() { double x = 0, y = 0, z = sqrt(1.0/c); double step = 1.0, rate = 0.99; while (step > eps) { for (int k = 0; k < 8; k++) { double nx = x + step * dx[k]; double ny = y + step * dy[k]; double nz = calz(nx, ny); if (nz >= inf) continue; if (dis(nx, ny, nz) < dis(x, y, z)) { x = nx; y = ny; z = nz; } } step *= rate; } return dis(x, y, z); } int main() { while (scanf("%lf%lf%lf%lf%lf%lf", &a, &b, &c, &d, &e, &f) != EOF) { printf("%.7lf\n", solve()); } return 0; }
|