Problem Description There is a special number sequence which has n+1 integers. For each number in sequence, we have two rules:
● a
i ∈ [0,n]
● a
i ≠ a
j( i ≠ j )
For sequence a and sequence b, the integrating degree t is defined as follows(“?” denotes exclusive or):
t = (a
0 ? b
0) + (a
1 ? b
1) +???+ (a
n ? b
n)
(sequence B should also satisfy the rules described above)
Now give you a number n and the sequence a. You should calculate the maximum integrating degree t and print the sequence b.
Input There are multiple test cases. Please process till EOF.
For each case, the first line contains an integer n(1 ≤ n ≤ 10
5), The second line contains a
0,a
1,a
2,...,a
n.
Output For each case, output two lines.The first line contains the maximum integrating degree t. The second line contains n+1 integers b
0,b
1,b
2,...,b
n. There is exactly one space between b
i and b
i+1
(0 ≤ i ≤ n - 1). Don’t ouput any spaces after b
n.
Sample Input
4
2 0 1 4 3
Sample Output
20
1 0 2 3 4
Source 2014 ACM/ICPC Asia Regional Xi'an Online
思路:从最大的一个数开始找能配对使他们的异或值最大的一个数即可。幸亏比赛的时候不是我敲,因为longlong WA 了好几发。
#include
int num[100005],d[100005];
int main()
{
int n,i,j,t;
long long ans;
while(~scanf("%d",&n))
{
for(i=0;i<=n;i++) d[i]=-1;
for(i=0;i<=n;i++) scanf("%d",&num[i]);
ans=0;
for(i=n;i>=0;i--)
{
if(d[i]==-1)
{
t=0;
for(j=0;;j++)
{
if(!(i&(1<
=i) break; } t-=(1<
|