计算矩阵M’中所有元素的和 解题思路:因为矩阵C为N*N的矩阵,N最大为1000,就算用快速幂也超时,但是因为C = A*B, 所以CN?N=ABAB…AB=AC′N?N?1B,C‘ = B*A, 为K*K的矩阵,K最大为6,完全可以接受。
#include
#include
#include
using namespace std; const int maxn = 1005; const int MOD = 6; typedef int Mat[maxn][maxn]; int N, K; Mat A, B, X, Y, tmp; void put (Mat x, int r, int c) { for (int i = 0; i < K; i++) { for (int j = 0; j < K; j++) printf("%d ", x[i][j]); printf("\n"); } } void mul_mat (Mat ret, Mat a, Mat b, int r, int t, int c) { memset(tmp, 0, sizeof(tmp)); for (int k = 0; k < t; k++) { for (int i = 0; i < r; i++) for (int j = 0; j < c; j++) tmp[i][j] = (tmp[i][j] + a[i][k] * b[k][j]) % MOD; } memcpy(ret, tmp, sizeof(tmp)); } void pow_mat (Mat ret, Mat x, int n) { memset(Y, 0, sizeof(Y)); for (int i = 0; i < K; i++) Y[i][i] = 1; while (n) { if (n&1) mul_mat(Y, Y, x, K, K, K); mul_mat(x, x, x, K, K, K); n >>= 1; } memcpy(ret, Y, sizeof(Y)); } void init () { for (int i = 0; i < N; i++) for (int j = 0; j < K; j++) scanf("%d", &A[i][j]); for (int i = 0; i < K; i++) for (int j = 0; j < N; j++) scanf("%d", &B[i][j]); } int main () { while (scanf("%d%d", &N, &K) == 2 && N + K) { init(); mul_mat(X, B, A, K, N, K); pow_mat(X, X, N*N-1); mul_mat(X, A, X, N, K, K); mul_mat(X, X, B, N, K, N); int ans = 0; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) ans += X[i][j]; printf("%d\n", ans); } return 0; }