设为首页 加入收藏

TOP

leetcode 之 Longest Valid Parentheses
2015-07-20 17:52:23 来源: 作者: 【 】 浏览:1
Tags:leetcode Longest Valid Parentheses

leetcode中和括号匹配相关的问题共有三个,分别是:

Valid Parentheses


Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.

The brackets must close in the correct order, "()" and "()[]{}" are all valid but "(]" and "([)]" are not.

该提比较简单,正常情况下直接用堆栈就可以了,但有一次面试要求必须要用递归写,其实也很简单,具体参考这里


Longest Valid Parentheses


Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

For "(()", the longest valid parentheses substring is "()", which has length = 2.

Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.

该题目使用动态规划来计算,dp[i]表示到第i个位置的最大长度,由于匹配的括号必须是连续的,所以,如果有j < i 且j和i匹配,则dp[i] = (i-j+)+dp[j]。

从转移方程来看,好像是二维DP,但是可以使用堆栈来转化为一维的,简单来说,就是遇到左括号就进栈,遇到右括号就出栈,而出栈的位置就是上

面的j,所以不需要进行二维扫描就可定位到j。

class Solution {
public:
    int longestValidParentheses(string s) {
    	int length = s.size(),i,maxLength = 0;
    	vector
  
    dp(length,0);
    	stack
   
     stk; // 左括号的下标 for(i = 0; i < length;++i) { if(s[i] == '(')stk.push(i); else { if(!stk.empty()) { int start = stk.top(); stk.pop(); dp[i] = i - start + 1; if(start > 0)dp[i] += dp[start-1]; if(dp[i] > maxLength)maxLength = dp[i]; } } } return maxLength; } };
   
  


Generate Parentheses


Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

"((()))", "(()())", "(())()", "()(())", "()()()"

该问题是著名的卡特兰数,具体参考该博客
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇hdu3790最短路径问题 下一篇编程之美leetcode之编辑距离

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: