设为首页 加入收藏

TOP

uva 11149 - Power of Matrix(矩阵倍增)
2015-07-20 17:53:17 来源: 作者: 【 】 浏览:1
Tags:uva 11149 Power Matrix 矩阵 倍增

题目链接:uva 11149 - Power of Matrix

题目大意:给定一个矩阵,求∑ikAi

解题思路:因为k比较大,所以即使用快速幂的话复杂度还是有点高,利用矩阵倍增的方法∑ikAi=(1+Ak/2)?∑ik/2Ai

#include 
   
     #include 
    
      #include 
     
       using namespace std; const int maxn = 50; const int MOD = 10; struct Mat { int r, c, arr[maxn][maxn]; Mat () { memset(arr, 0, sizeof(arr)); } Mat (int r = 0, int c = 0) { set(r, c); } void set (int r, int c) { this->r = r; this->c = c; memset(arr, 0, sizeof(arr)); } Mat operator * (const Mat& u) { Mat ret(r, u.c); for (int k = 0; k < c; k++) { for (int i = 0; i < r; i++) for (int j = 0; j < u.c; j++) ret.arr[i][j] = (ret.arr[i][j] + arr[i][k] * u.arr[k][j]) % MOD; } return ret; } Mat operator + (const Mat& u) { Mat ret(r, c); for (int i = 0; i < r; i++) for (int j = 0; j < c; j++) ret.arr[i][j] = (arr[i][j] + u.arr[i][j]) % MOD; return ret; } }; int N, K; Mat pow_mat (Mat x, int n) { Mat ret(N, N); for (int i = 0; i < N; i++) ret.arr[i][i] = 1; while (n) { if (n&1) ret = ret * x; x = x * x; n >>= 1; } return ret; } Mat solve (Mat x, int n) { if (n == 1) return x; Mat ret(N, N); for (int i = 0; i < N; i++) ret.arr[i][i] = 1; if (n == 0) return ret; ret = (ret + pow_mat(x, n>>1)) * solve(x, n>>1); if (n&1) ret = ret + pow_mat(x, n); return ret; } void put (Mat u) { for (int i = 0; i < u.r; i++) { printf("%d", u.arr[i][0]); for (int j = 1; j < u.c; j++) printf(" %d", u.arr[i][j]); printf("\n"); } } int main () { while (scanf("%d%d", &N, &K) == 2 && N) { Mat ans(N, N); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { scanf("%d", &ans.arr[i][j]); ans.arr[i][j] %= MOD; } } ans = solve(ans, K); put(ans); printf("\n"); } return 0; }
     
    
   
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇C++设计模式之抽象工厂模式(一) 下一篇UVA 1025 A Spy in the Metro(DP)

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: