题目链接:uva 11149 - Power of Matrix
题目大意:给定一个矩阵,求∑ikAi
解题思路:因为k比较大,所以即使用快速幂的话复杂度还是有点高,利用矩阵倍增的方法∑ikAi=(1+Ak/2)?∑ik/2Ai
#include
#include
#include
using namespace std; const int maxn = 50; const int MOD = 10; struct Mat { int r, c, arr[maxn][maxn]; Mat () { memset(arr, 0, sizeof(arr)); } Mat (int r = 0, int c = 0) { set(r, c); } void set (int r, int c) { this->r = r; this->c = c; memset(arr, 0, sizeof(arr)); } Mat operator * (const Mat& u) { Mat ret(r, u.c); for (int k = 0; k < c; k++) { for (int i = 0; i < r; i++) for (int j = 0; j < u.c; j++) ret.arr[i][j] = (ret.arr[i][j] + arr[i][k] * u.arr[k][j]) % MOD; } return ret; } Mat operator + (const Mat& u) { Mat ret(r, c); for (int i = 0; i < r; i++) for (int j = 0; j < c; j++) ret.arr[i][j] = (arr[i][j] + u.arr[i][j]) % MOD; return ret; } }; int N, K; Mat pow_mat (Mat x, int n) { Mat ret(N, N); for (int i = 0; i < N; i++) ret.arr[i][i] = 1; while (n) { if (n&1) ret = ret * x; x = x * x; n >>= 1; } return ret; } Mat solve (Mat x, int n) { if (n == 1) return x; Mat ret(N, N); for (int i = 0; i < N; i++) ret.arr[i][i] = 1; if (n == 0) return ret; ret = (ret + pow_mat(x, n>>1)) * solve(x, n>>1); if (n&1) ret = ret + pow_mat(x, n); return ret; } void put (Mat u) { for (int i = 0; i < u.r; i++) { printf("%d", u.arr[i][0]); for (int j = 1; j < u.c; j++) printf(" %d", u.arr[i][j]); printf("\n"); } } int main () { while (scanf("%d%d", &N, &K) == 2 && N) { Mat ans(N, N); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { scanf("%d", &ans.arr[i][j]); ans.arr[i][j] %= MOD; } } ans = solve(ans, K); put(ans); printf("\n"); } return 0; }