设为首页 加入收藏

TOP

HDOJ 4259 Double Dealing
2015-07-20 17:55:13 来源: 作者: 【 】 浏览:4
Tags:HDOJ 4259 Double Dealing


找每一位的循环节,求lcm


Double Dealing

Time Limit: 50000/20000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1806 Accepted Submission(s): 622


Problem Description Take a deck of n unique cards. Deal the entire deck out to k players in the usual way: the top card to player 1, the next to player 2, the k th to player k, the k+1 st to player 1, and so on. Then pick up the cards ? place player 1′s cards on top, then player 2, and so on, so that player k’s cards are on the bottom. Each player’s cards are in reverse order ? the last card that they were dealt is on the top, and the first on the bottom.
How many times, including the first, must this process be repeated before the deck is back in its original order?
Input There will be multiple test cases in the input. Each case will consist of a single line with two integers, n and k (1≤ n≤800, 1≤ k≤800). The input will end with a line with two 0s.

Output For each test case in the input, print a single integer, indicating the number of deals required to return the deck to its original order. Output each integer on its own line, with no extra spaces, and no blank lines between answers. All possible inputs yield answers which will fit in a signed 64-bit integer.
Sample Input
1 3
10 3
52 4
0 0

Sample Output
1
4
13

Source The University of Chicago Invitational Programming Contest 2012


#include 
  
   
#include 
   
     #include 
    
      #include 
     
       #include 
      
        using namespace std; int n,m; typedef long long int LL; int next[880],to[880]; bool vis[880]; LL gcd(LL a,LL b) { if(b==0) return a; return gcd(b,a%b); } LL lcm(LL a,LL b) { return a/gcd(a,b)*b; } int get_int() { char ch; int ret=0; while(ch=getchar()) { if(ch>='0'&&ch<='9') { ret=ret*10+ch-'0'; } else break; } return ret; } int main() { while(true) { n=get_int();m=get_int(); if(n==0&&m==0) break; if(n<=m) { puts("1"); continue; } ///mo ni yi chi for(int i=1;i<=n;i++) next[i]=i; for(int i=1;i<=m;i++) { to[i]=n/m; if(i<=n%m) to[i]++; to[i]+=to[i-1]; } for(int i=1;i<=n;i++) { next[i]=to[(i-1)%m+1]--; } LL ans=1; memset(vis,false,sizeof(vis)); for(int i=1;i<=n;i++) { if(vis[i]) continue; int t=next[i]; LL temp=1; while(t!=i) { vis[t]=true; t=next[t]; temp++; } ans=lcm(ans,temp); } printf("%I64d\n",ans); } return 0; } 
      
     
    
   
  



】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇HDU 3001 Travelling (三进制状.. 下一篇POJ1269_Intersecting Lines(几何..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: