检查数据倾斜分布(一)

2014-11-24 08:16:17 · 作者: · 浏览: 3

从传统 数据库迁移到GP中一个重要的且经常被开发人员忽略的概念是数据分布,没有良好的设计表的分布键会导致严重的性能问题,以下函数将给开发人员及DBA检测一个表的数据倾斜情况。
-- Function: gpmg.data_skew(character varying)
 
-- DROP FUNCTION gpmg.data_skew(character varying);
 
CREATE OR REPLACE FUNCTION gpmg.data_skew(tablename character varying)
  RETURNS text AS
$BODY$
--2014-05-26,Gtlions,收集和统计数据倾斜情况
declare
  v_func character varying(200)='gpmg.data_skew()';
  v_begin_time timestamp;
  v_end_time timestamp;
  v_status int=0;
  v_msg text='Done.';
  v_record record;
 
  v_id integer;
  v_rq timestamp;  
  v_segs integer=64;
  v_totalnums bigint=0;
  v_maxskew numeric=0.0;
  v_minskew numeric=0.0;
  v_maxskew_seg varchar(20);
  v_minskew_seg varchar(20);
  v_maxrows bigint=0;
  v_minrows bigint=0;   
  v_result varchar(2000);
 
begin
  v_id=nextval('gpmg.commonseq');
  v_rq=now();
  v_begin_time=clock_timestamp();
  v_result = 'GP hava ';
  select into v_segs count(*) segs from gp_segment_configuration where role='p' and content<>-1;
  v_result = v_result||v_segs||' instances, Standard skew is '||1.0/v_segs||'. ';
  -- bg1 segid, bg2 节点记录数量
  execute 'insert into gpmg.commontab(seq,tabname,bg1,bg2) select '||v_id||','''||$1||''',gp_segment_id,count(*) segrownums from '||$1||' group by rollup(( gp_segment_id)) order by gp_segment_id';
  select into v_segs,v_totalnums v_segs,max(bg2) from gpmg.commontab where seq=v_id and tabname=$1;
  --nm1 标准倾斜率, nm2 节点倾斜率, nm3 标准-节点倾斜率绝对值
  update gpmg.commontab set nm1=1::numeric/v_segs,nm2=bg2::numeric/v_totalnums,nm3=abs(1::numeric/v_segs-bg2::numeric/v_totalnums) where seq=v_id and tabname=$1;
  select
into v_maxskew,v_minskew max(nm2),min(nm2) from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null; select into v_maxskew_seg hostname from gp_segment_configuration where role='p' and content in (select bg1 from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null and nm2=v_maxskew limit 1); select into v_minskew_seg hostname from gp_segment_configuration where role='p' and content in (select bg1 from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null and nm2=v_minskew limit 1); select into v_maxrows bg2 from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null and nm2=v_maxskew limit 1; select into v_minrows bg2 from gpmg.commontab where seq=v_id and tabname=$1 and bg1 is not null and nm2=v_minskew limit 1; v_result =v_result ||'You Table ['||$1||'] skew info: [table_totalrows:'||v_totalnums||', maxskew:seg-'||v_maxskew_seg||', rows-'||v_maxrows||' '||v_maxskew||', minskew:seg-'||v_minskew_seg||', rows-'||v_minrows||' '||v_minskew||']'; delete from gpmg.commontab where seq=v_id and tabname=$1; return v_result; v_end_time=clock_timestamp(); end; $BODY$ LANGUAGE plpgsql VOLATILE; ALTER FUNCTION gpmg.data_skew(character varying) OWNER TO gpadmin; GRANT EXECUTE ON FUNCTION gpmg.data_skew(character varying) TO public; GRANT EXECUTE ON FUNCTION gpmg.data_skew(character varying) TO gpadmin; bigdatagp=# select gpmg.data_skew('gpmg.manager_table'); data_skew ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------- GP hava 64 instances, Standard skew is 0.01562500000000000000. You Table [gpmg.