肤色检测输出结果中有许多瑕疵,待于进一步处理(如:滤波操作.....)。在此贴出几种图像肤色检测相关代码,供大家参考。
第一种:RGB color space
// skin region location using rgb limitation
void ImageSkin::ImageSkinRGB(IplImage* rgb,IplImage* _dst)
{
assert(rgb->nChannels==3&& _dst->nChannels==3);
static const int R=2;
static const int G=1;
static const int B=0;
IplImage* dst=cvCreateImage(cvGetSize(_dst),8,3);
cvZero(dst);
for (int h=0;h
height;h++) {
unsigned char* prgb=(unsigned char*)rgb->imageData+h*rgb->widthStep;
unsigned char* pdst=(unsigned char*)dst->imageData+h*dst->widthStep;
for (int w=0;w
width;w++) { if ((prgb[R]>95 && prgb[G]>40 && prgb[B]>20 && prgb[R]-prgb[B]>15 && prgb[R]-prgb[G]>15)||//uniform illumination (prgb[R]>200 && prgb[G]>210 && prgb[B]>170 && abs(prgb[R]-prgb[B])<=15 && prgb[R]>prgb[B]&& prgb[G]>prgb[B]) ) { memcpy(pdst,prgb,3); } prgb+=3; pdst+=3; } } cvCopyImage(dst,_dst); cvReleaseImage(&dst); }
第二种:RG color space
// skin detection in rg space
void ImageSkin::ImageSkinRG(IplImage* rgb,IplImage* gray)
{
assert(rgb->nChannels==3&&gray->nChannels==1);
const int R=2;
const int G=1;
const int B=0;
double Aup=-1.8423;
double Bup=1.5294;
double Cup=0.0422;
double Adown=-0.7279;
double Bdown=0.6066;
double Cdown=0.1766;
for (int h=0;h
height;h++) {
unsigned char* pGray=(unsigned char*)gray->imageData+h*gray->widthStep;
unsigned char* pRGB=(unsigned char* )rgb->imageData+h*rgb->widthStep;
for (int w=0;w
width;w++) { int s=pRGB[R]+pRGB[G]+pRGB[B]; double r=(double)pRGB[R]/s; double g=(double)pRGB[G]/s; double Gup=Aup*r*r+Bup*r+Cup; double Gdown=Adown*r*r+Bdown*r+Cdown; double Wr=(r-0.33)*(r-0.33)+(g-0.33)*(g-0.33); if (g
Gdown && Wr>0.004) { *pGray=255; } else { *pGray=0; } pGray++; pRGB+=3; } } }
第三种:otsu阈值化
// reference: Rafael C. Gonzalez. Digital Image Processing Using MATLAB
void ImageSkin::ImageThresholdOtsu(IplImage* src, IplImage* dst)
{
int height=src->
height;
int width=src->width;
//histogram
float histogram[256]={0};
for(int i=0;i
imageData+src->widthStep*i;
for(int j=0;j
maxVariance) { maxVariance=variance; threshold=i; } } cvThreshold(src,dst,threshold,255,CV_THRESH_BINARY); }
第四种:Ycrcb之cr分量+otsu阈值化
void ImageSkin::ImageSkinOtsu(IplImage* src, IplImage* dst)
{
assert(dst->nChannels==1&& src->nChannels==3);
IplImage* ycrcb=cvCreateImage(cvGetSize(src),8,3);
IplImage* cr=cvCreateImage(cvGetSize(src),8,1);
cvCvtColor(src,ycrcb,CV_BGR2YCrCb);
cvSplit(ycrcb,0,cr,0,0);
ImageThresholdOtsu(cr,cr);
cvCopyImage(cr,dst);
cvReleaseImage(&cr);
cvReleaseImage(&ycrcb);
}
第五种:YCrCb中133<=Cr<=173 77<=Cb<=127
void ImageSkin::ImageSkinYUV(IplImage* src,IplImage* dst)
{
IplImage* ycrcb=cvCreateImage(cvGetSize(src),8,3);
//IplImage* cr=cvCreateImage(cvGetSize(src),8,1);
//IplImage* cb=cvCreateImage(cvGetSize(src),8,1);
cvCvtColor(src,ycrcb,CV_BGR2YCrCb);
//cvSplit(ycrcb,0,cr,cb,0);
static const int Cb=2;
static const int Cr=1;
static const int Y=0;
//IplImage* dst=cvCreateImage(cvGetSize(_dst),8,3);
cvZero(dst);
for (int h=0;h
height;h++) {
unsigned char* pycrcb=(unsigned char*)ycrcb->imageData+h*ycrcb->widthStep;
unsigned char* psrc=(unsigned char*)src->imageData+h*src->widthStep;
unsigned char* pdst=(unsigned char*)dst->imageData+h*dst->widthStep;
for (int w=0;w
width;w++) { if (pycrcb[Cr]