package Level3;
import java.util.ArrayList;
/**
* Triangle
* Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
*
*/
public class S120 {
public static void main(String[] args) {
}
public int minimumTotal(ArrayList
> triangle) {
int rowLen = triangle.size();
// dp数组用来存储每一格子的最优解
int[][] sum = new int[rowLen][rowLen];
// 最底下一行
ArrayList last = triangle.get(triangle.size()-1);
for(int i=0; i=0; i--){
ArrayList row = triangle.get(i);
for(int j=0; j<=i; j++){
sum[i][j] = Math.min(sum[i+1][j], sum[i+1][j+1]) + row.get(j);
}
}
return sum[0][0];
}
}