设为首页 加入收藏

TOP

go语言之并发(一)
2017-09-30 13:56:59 】 浏览:8401
Tags:语言 并发
简介
 
        多核处理器越来越普及,那有没有一种简单的办法,能够让我们写的软件释放多核的威力?答案是:Yes。随着Golang, Erlang, Scale等为并发设计的程序语言的兴起,新的并发模式逐渐清晰。正如过程式编程和面向对象一样,一个好的编程模式需要有一个极其简洁的内核,还有在此之上丰富的外延,可以解决现实世界中各种各样的问题。本文以GO语言为例,解释其中内核、外延。
 
并发模式之内核
 
        这种并发模式的内核只需要协程和通道就够了。其中协程负责执行代码,通道负责在协程之间传递事件。
  Go语言并发之美
    并发编程一直以来都是个非常困难的工作。要想编写一个良好的并发程序,我们不得不了解线程, 锁,semaphore,barrier甚至CPU更新高速缓存的方式,而且他们个个都有怪脾气,处处是陷阱。笔者除非万不得以,决不会自己操作这些底层 并发元素。一个简洁的并发模式不需要这些复杂的底层元素,只需协程和通道就够了。
      协程是轻量级的线程。在过程式编程中,当调用一个过程的时候,需要等待其执行完才返回。而调用一个协程的时候,不需要等待其执行完,会立即返回。协程十分轻量,Go语言可以在一个进程中执行有数以十万计的协程,依旧保持高性能。而对于普通的平台,一个进程有数千个线程,其CPU会忙于上下文切换,性能急剧下降。随意创建线程可不是一个好主意,但是我们可以大量使用的协程。

        通道是协程之间的数据传输通道。通道可以在众多的协程之间传递数据,具体可以值也可以是个引用。通道有两种使用方式。

        ·  协程可以试图向通道放入数据,如果通道满了,会挂起协程,直到通道可以为他放入数据为止。

         ·  协程可以试图向通道索取数据,如果通道没有数据,会挂起协程,直到通道返回数据为止。

        如此,通道就可以在传递数据的同时,控制协程的运行。有点像事件驱动,也有点像阻塞队列。这两个概念非常的简单,各个语言平台都会有相应的实现。在Java和C上也各有库可以实现两者。

  Go语言并发之美

  只要有协程和通道,就可以优雅的解决并发的问题。不必使用其他和并发有关的概念。那如何用这两把利刃解决各式各样的实际问题呢?

 
并发模式之外延
 
        协程相较于线程,可以大量创建。打开这扇门,我们拓展出新的用法,可以做生成器,可以让函数返回“服务”,可以让循环并发执行,还能共享变量。但是出现新 的用法的同时,也带来了新的棘手问题,协程也会泄漏,不恰当的使用会影响性能。下面会逐一介绍各种用法和问题。演示的代码用GO语言写成,因为其简洁明 了,而且支持全部功能。
 
1.生成器
 
       有的时候,我们需要有一个函数能不断生成数据。比方说这个函数可以读文件,读网络,生成自增长序列,生成随机数。这些行为的特点就是,函数的已知一些变量,如文件路径。然后不断调用,返回新的数据。
Go语言并发之美

下面生成随机数为例,以让我们做一个会并发执行的随机数生成器。

// 函数rand_generator_1 ,返回 int
funcrand_generator_1() int {
         return rand.Int()
}
//        上面是一个函数,返回一个int。假如rand.Int()这个函数调用需要很长时间等待,那该函数的调用者也会因此而挂起。所以我们可以创建一个协程,专门执行rand.Int()。


// 函数rand_generator_2,返回通道(Channel) funcrand_generator_2() chan int { // 创建通道 out := make(chan int) // 创建协程 go func() { for { //向通道内写入数据,如果无人读取会等待 out <- rand.Int() } }() return out } funcmain() { // 生成随机数作为一个服务 rand_service_handler :=rand_generator_2() // 从服务中读取随机数并打印 fmt.Printf("%d\n",<-rand_service_handler) }

 

   上面的这段函数就可以并发执行了rand.Int()。有一点值得注意到函数的返回可以理解为一个“服务”。但我们需要获取随机数据时候,可以随时向这个 服务取用,他已经为我们准备好了相应的数据,无需等待,随要随到。如果我们调用这个服务不是很频繁,一个协程足够满足我们的需求了。但如果我们需要大量访问,怎么办?我们可以用下面介绍的多路复用技术,启动若干生成器,再将其整合成一个大的服务。

        调用生成器,可以返回一个“服务”。可以用在持续获取数据的场合。用途很广泛,读取数据,生成ID,甚至定时器。这是一种非常简洁的思路,将程     序并发化。

2.多路复用

        多路复用是让一次处理多个队列的技术。Apache使用处理每个连接都需要一个进程,所以其并发性能不是很好。而Nginx使用多路复用的技术,让一 个进程处理多个连接,所以并发性能比较好。同样,在协程的场合,多路复用也是需要的,但又有所不同。多路复用可以将若干个相似的小服务整合成一个大服务。

Go语言并发之美

那么让我们用多路复用技术做一个更高并发的随机数生成器吧。

// 函数rand_generator_3 ,返回通道(Channel)
         funcrand_generator_3() chan int {
         // 创建两个随机数生成器服务
         rand_generator_1 := rand_generator_2()
         rand_generator_2 := rand_generator_2()
         //创建通道
         out := make(chan int)
          //创建协程
         go func() {
                   for {
                           //读取生成器1中的数据,整合
                           out <-<-rand_generator_1
                   }
         }()
         go func() {
                   for {
                            //读取生成器2中的数据,整合
                            out <-<-rand_generator_2
                   }
         }()
         return out
}

上面是使用了多路复用技术的高并发版的随机数生成器。通过整合两个随机数生成器,这个版本的能力是刚才的两倍。虽然协程可以大量创建,但是众多协程还是会争抢输出的通道。Go语言提供了Select关键字来解决,各家也有各家窍门。加大输出通道的缓冲大小

首页 上一页 1 2 3 4 下一页 尾页 1/4/4
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇golang 标准库间依赖的可视化展示 下一篇Golang控制goroutine的启动与关闭

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

最新文章

热门文章

C 语言

C++基础

windows编程基础

linux编程基础

C/C++面试题目