if(node.flag==1)
{
cout<
r=0; //表示已经访问了该结点
}
else
{
node.flag=1;
s.push(node);
r=r->rChild;
}
}
}
}
//重载形式
int BTree::BTreeSize()
{
return BTreeSize(root);
}
//求二叉树结点个数的函数
int BTree::BTreeSize(BTreeNode* r)
{
//二叉树的结点个数为左右子树的高度之和再+1
if(r==0) return 0;
else
return 1+BTreeSize(r->lChild)+BTreeSize(r->rChild);
}
//重载形式
int BTree::BTreeLeaves()
{
return BTreeLeaves(root);
}
//求二叉树叶子结点个数的函数
int BTree::BTreeLeaves(BTreeNode* r)
{
//当为空时,返回0;当找到叶子时返回1
if(r==0) return 0;
else
if(r->lChild==0&&r->rChild==0)
return 1;
else
return BTreeLeaves(r->lChild)+BTreeLeaves(r->rChild);
}
//重载形式
int BTree::BTreeHeight()
{
return BTreeHeight(root);
}
//求二叉树高度的函数
int BTree::BTreeHeight(BTreeNode* r)
{
if(r==0) return 0;
else
{
//二叉树的高度为左右子树的最大者+1
int rHei=BTreeHeight(r->rChild);
return (lHei>rHei) lHei+1:rHei+1;
}
}
//层次遍历求树高需要利用的新结构
struct LayerBTreeNode
{
BTreeNode* ptr;
int height;
};
//层次遍历求高度
int BTree::layerHeight()
{
queue
LayerBTreeNode temp,lTemp,rTemp; //牺牲空间来获得算法的清晰度
BTreeNode* r=getRoot();
int hei=1;
temp.ptr=r;
temp.height=1;
que.push(temp); //先将根对应的LayerBTreeNode对象进队
//不为空时
while(!que.empty())
{
//BTreeNode* btreePtr=0;
temp=que.front(); //取出队首元素
que.pop();
r=temp.ptr;
//用当前的高度跟取出的队首进行比较
if(hei
if(r->lChild!=0||r->rChild!=0)
{
//如果它的左右子树不为空,则进队列
if(r->lChild!=0)
{
lTemp.ptr=r->lChild;
lTemp.height=temp.height+1; //在原来高度基础上加1,再入队列
que.push(lTemp);
}
if(r->rChild!=0)
{
rTemp.ptr=r->rChild;
rTemp.height=temp.height+1;
que.push(rTemp);
}
}
}
return hei;
}