最小生成树:Prim算法
最小生成树
给定一无向带权图,顶点数是n,要使图连通只需n-1条边,若这n-1条边的权值和最小,则称有这n个顶点和n-1条边构成了图的最小生成树(minimum-cost spanning tree)。
Prim算法
Prim算法是解决最小生成树的常用算法。它采取贪心策略,从指定的顶点开始寻找最小权值的邻接点。图G=
,初始时S={V0},把与V0相邻接,且边的权值最小的顶点加入到S。不断地把S中的顶点与V-S中顶点的最小权值边加入,直到所有顶点都已加入到S中。
实例

从V0开始

?
代码
类定义
?
#include
#include
#include
using namespace std; #define MAXWEIGHT 100 //边 typedef struct edge_tag { int tail; int head; }Edge; //最近边 typedef struct closeedge_tag { int adjvex; //邻接点 int weight; //权值 }CloseEdge; class Graph { private: //顶点数 int numV; //边数 int numE; //邻接矩阵 int **matrix; public: Graph(int numV); //建图 void createGraph(int numE); //析构方法 ~Graph(); //Prim算法 void Prim(int); int minEdgeVex(CloseEdge*, bool*); void updateCloseEdge(CloseEdge*, bool*, int); //打印邻接矩阵 void printAdjacentMatrix(); //检查输入 bool check(int, int, int); };
类实现
?
?
//构造函数,指定顶点数目
Graph::Graph(int numV)
{
//对输入的顶点数进行检测
while (numV <= 0)
{
cout << 顶点数有误!重新输入 ;
cin >> numV;
}
this->numV = numV;
//构建邻接矩阵,并初始化
matrix = new int*[numV];
int i, j;
for (i = 0; i < numV; i++)
matrix[i] = new int[numV];
for (i = 0; i < numV; i++)
for (j = 0; j < numV; j++)
{
if (i == j)
matrix[i][i] = 0;
else
matrix[i][j] = MAXWEIGHT;
}
}
void Graph::createGraph(int numE)
{
/*
对输入的边数做检测
一个numV个顶点的有向图,最多有numV*(numV - 1)条边
*/
while (numE < 0 || numE > numV*(numV - 1))
{
cout << 边数有问题!重新输入 ;
cin >> numE;
}
this->numE = numE;
int tail, head, weight, i;
i = 0;
cout << 输入每条边的起点(弧尾)、终点(弧头)和权值 << endl;
while (i < numE)
{
cin >> tail >> head >> weight;
while (!check(tail, head, weight))
{
cout << 输入的边不正确!请重新输入 << endl;
cin >> tail >> head >> weight;
}
//Prim算法主要针对的是无向图
matrix[tail][head] = weight;
matrix[head][tail] = weight;
i++;
}
}
Graph::~Graph()
{
int i;
for (i = 0; i < numV; i++)
delete[] matrix[i];
delete[]matrix;
}
/*
Prim算法
求最小生成树
*/
void Graph::Prim(int vertex)
{
//有numV个顶点的图的最小生成树有numV-1条边
Edge *edges = new Edge[numV - 1];
//标记顶点是否加入
bool *add = new bool[numV];
memset(add, 0, numV);
//先把vertex加入
add[vertex] = true;
//最近边
CloseEdge *closeedge = new CloseEdge[numV];
int i;
//初始化最近边
for (i = 0; i < numV; i++)
{
closeedge[i].weight = matrix[vertex][i];
if (!add[i] && matrix[vertex][i] > 0 && matrix[vertex][i] < MAXWEIGHT)
closeedge[i].adjvex = vertex;
}
int v, count = 0;
while (count < numV - 1)
{
v = minEdgeVex(closeedge, add);
add[v] = true;
edges[count].tail = closeedge[v].adjvex;
edges[count].head = v;
updateCloseEdge(closeedge, add, v);
count++;
}
cout << 从顶点 << vertex << 开始,最小生成树的边是 << endl;
for (i = 0; i < count; i++)
cout << edges[i].tail << --- << edges[i].head << endl;
//释放空间
delete[]edges;
delete[]add;
delete[]closeedge;
}
//从closeedge中寻找最小边的邻接顶点
int Graph::minEdgeVex(CloseEdge *closeedge, bool *add)
{
int i, v, w;
v = 0;
w = MAXWEIGHT;
for (i = 0; i < numV ; i++)
if (!add[i] && closeedge[i].weight < w)
{
w = closeedge[i].weight;
v = i;
}
return v;
}
//更新最近边
void Graph::updateCloseEdge(CloseEdge* closeedge, bool *add, int v)
{
int i;
for (i = 0; i < numV; i++)
if (!add[i] && matrix[v][i] < closeedge[i].weight)
{
closeedge[i].adjvex = v;
closeedge[i].weight = matrix[v][i];
}
}
//打印邻接矩阵
void Graph::printAdjacentMatrix()
{
int i, j;
cout.setf(ios::left);
cout << setw(7) << ;
for (i = 0; i < numV; i++)
cout << setw(7) << i;
cout << endl;
for (i = 0; i < numV; i++)
{
cout << setw(7) << i;
for (j = 0; j < numV; j++)
cout << setw(7) << matrix[i][j];
cout << endl;
}
}
bool Graph::check(int tail, int head, int weight)
{
if ((tail == head) || tail < 0 || tail >= numV
|| head < 0 || head >= numV
|| weight <= 0 || weight >= MAXWEIGHT)
return false;
return true;
} 主函数
?
?
int main()
{
cout << ******Floyd***by David*** << endl;
int numV, numE;
cout << 建图... << endl;
cout << 输入顶点数 ;
cin >> numV;
Graph graph(numV);
cout << 输入边数 ;
cin >> numE;
graph.createGraph(numE);
cout << endl << Prim... << endl;
for (int i = 0; i < numV/2; i++)
graph.Prim(i);
system(pause);
return 0;
} 运行
?
?
?
?
?