设为首页 加入收藏

TOP

POJ 2955 Brackets (区间dp 括号匹配)
2015-11-21 00:58:14 来源: 作者: 【 】 浏览:1
Tags:POJ 2955 Brackets 区间 括号 匹配

?

Brackets
Time Limit: 1000MS ? Memory Limit: 65536K
Total Submissions: 3951 ? Accepted: 2078

?

Description

We give the following inductive definition of a “regular brackets” sequence:

the empty sequence is a regular brackets sequence,if s is a regular brackets sequence, then ( s) and [ s] are regular brackets sequences, andif a and b are regular brackets sequences, then ab is a regular brackets sequence.no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im n, ai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

Stanford Local 2004

题目链接:http://poj.org/problem?id=2955

题目大意:给一个括号序列,问序列中合法的括号最多有多少个,若A合法,则[A],(A)均合法,若A,B合法则AB也合法

题目分析:和POJ 1141那道经典括号匹配类似,这题更简单一些,想办法把问题转化,既然要求最大的括号匹配数,我们考虑加最少的括号,使得整个序列合法,这样就转变成1141那题,开下脑动类比二分图最大匹配的性质,最大匹配+最大独立集=点数,显然要加入最少的点使序列合法,则加的最少的点数即为|最大独立集|,我们要求的是原序列的|最大匹配|,以上纯属yy,下面给出转移方程,和1141一模一样
dp[i][i] = 1;
然后枚举区间长度
1)外围匹配:dp[i][j] = dp[i + 1][j - 1];
2)外围不匹配,枚举分割点:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]); (i <= k < j)

#include 
  
   
#include 
   
     #include 
    
      using namespace std; int const INF = 0x3fffffff; char s[205]; int dp[205][205]; int main() { while(scanf("%s", s) != EOF && strcmp(s, "end") != 0) { int len = strlen(s); memset(dp, 0, sizeof(dp)); for(int i = 0; i < len; i++) dp[i][i] = 1; for(int l = 1; l < len; l++) { for(int i = 0; i < len - l; i++) { int j = i + l; dp[i][j] = INF; if((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']')) dp[i][j] = dp[i + 1][j - 1]; for(int k = i; k < j; k++) dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]); } } printf("%d\n", len - dp[0][len - 1]); } } 
    
   
  

?

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇lintcode: ugly number 下一篇Codeforces 238E. Meeting Her 图..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: