一、迭代器概述
这个标题其实有点"标题党"的含义,因为C++在标准库中的实现迭代器的方式只有一种,也就是为类定义begin()和end()函数,C++11增加了range for语句,可以用来遍历迭代器中的元素。实现迭代器的第二种方式,就是用C++模拟C#和Java中的迭代器模式,并且我们可以定义出自己的foreach语句。除此之外,迭代器可能还有很多种实现的方法,各个库也会多自己的迭代器的实现有所定义,在这里只要明白迭代器的本质意义即可。
迭代器,也称作游标,是一种设计模式,我们可以对它进行递增(或选择下一个)来访问容器中的元素,而无需知道它内部是如何实现的。
很多语言提供foreach语句来访问容器中的每一个元素,其实也就是调用容器中的迭代器,抽象地来说就是:
foreach ( 元素 : 容器 ) { … }
上面的代码等效于:
for ( 游标=获得迭代器的开头,获得迭代器的末尾; 游标 != 迭代器末尾; 游标移动一个单位 ) {…} // C++ 的迭代器模式
或者:
while ( 迭代器游标移动一个单位(返回是否存在下一个单位)) { … } // C#、Java的迭代器模式,可以用迭代器。Current之类的方法返回游标所指向的元素
二、C++中的迭代器实现方式
迭代器其实是一个类,要自定义一个迭代器,就要重载迭代器的!=、解引用(*)、++运算符,以便它在range for语句中使用。range for 是C++11中新增的语句,如我们对一个集合使用语句for (auto i : collection ) 时,它的含义其实为:
for ( auto __begin = collection.begin(), auto __end = collection.end(); __begin != __end(); ++__begin )
{ i = *__begin;
… //循环体
}
begin和end是集合的成员函数,它返回一个迭代器。如果让一个类可以有range for的操作,它必须: · 拥有begin和end函数,它们均返回迭代器 · end函数返回一个指向集合末尾,但是不包含末尾元素的值,即用集合范围来表示,一个迭代器的范围是 [ begin, end ) 一个左闭右开区间 对于迭代器,它的要求至少是: · 必须重载++、!=和解引用(*)运算符;迭代器看起来会像一个指针 · 迭代器必须可以通过++最后满足!=条件,这样才能够终止循环
下面给出最简单的实现代码。我们定义一个CPPCollection类,里面有个字符串数组,我们让它能够通过range for将每个字符串输出来。
#include <IOSTREAM>
class CPPCollection {
public:
class Iterator{
public:
int index;
CPPCollection& outer;
Iterator(CPPCollection &o, int i) : outer(o), index(i) { }
void operator++(){
index++;
}
std::string operator*() const{
return outer.str[index];
}
bool operator !=(Iterator i){
return i.index != index - 1;
}
};
public:
std::string str {"a", "b", "c", "d", "e", "f", "g", "h", "i", "j"};
Iterator begin() {
return Iterator(*this, 0);
}
Iterator end() {
return Iterator(*this, 9);
}
};
我们定义了个内部的嵌套类Iterator,并为它重载了++、*、!=运算符。由于C++中的内部嵌套类与外围的类没有联系,为了访问外部类对象的值,我们必须要传入一个引用(或指针,本例中传入引用)。Iterator的自增方法其实就是增加内部的一个索引值。判断!=的方法是和另外一个迭代器做比较,这个迭代器一般是集合的末尾,当我们的索引值不等于末尾的索引值-1( [begin, end) )时,认为迭代器已经达到了末尾。 在CPPCollection类中,定义了begin()、end()分别返回开头、结束迭代器,调用如下代码:
CPPCollection cpc;
for (auto i : cpc){
std::cout 《 i 《 std::endl;
}
即可遍历集合中的所有元素了。
在泛型算法中,为了对集合中的每一个元素进行操作,我们通常要传入集合的迭代器头、迭代器尾,以及谓词,例如std::find_if(vec.begin(), vec.end(), …),这种泛型算法其实就是在迭代器的首位反复迭代,然后运行相应的行为。